
Kinetic Theory and Stochastic Processes

I. OVERVIEW

Kinetic theory stems from early attempts to derive macroscopic laws governing the behavior of large systems
starting with the laws governing the interaction of microscopic constituents. In general the kinetic theory deals
with the interrelation of the laws operating at different levels of description of the same system. Normally one
level is more fundamental and it provides a more detailed description of the system, while the other gives a reduced
description of the system. An example is provided by the equilibrium statistical mechanics where instead of describing
a macroscopic system by about 1023 dynamical variables characterizing atomic positions and velocities one uses just
a few macroscopic variables. It is essential that the relations between the macroscopic variables are closed. These
variables and the relations between them constitute but one example of the so-called collective variables and reduced
description.

Nature is full of sometimes surprising mathematical relations at all levels. For example, a recent study has shown
that that the citation distribution, that is the numbers of papers N(x) that has been cited a total of x times, -
has a power-law tail, N(x) ∼ x−α with α ≈ 3. Now suppose you would set the task of explaining why this law is
observed. It would not be very wise to start with the molecular dynamics and to try to derive the law from the first
principles. Yet this does not mean that the task itself is not feasible. In order to describe the observed behavior, one
would try to introduce certain collective variables that would describe the behavior of either single humans or whole
groups of humans and would try to write their effective or reduced dynamics that would be approximately closed. In
other words, one would try to construct a reduced description of the system. In fact, one could expect that a certain
mathematical behavior would govern the tail of N(x) just because it is formed by collective effects: minimally cited
papers are usually referenced by their authors and their close associates, while heavily cited papers become known
through collective effects.

A general question addressed by the kinetic theory is: knowing the laws at one level of description, are there new,
collective laws that appear at a higher level? And if yes, how can one derive them? These tantalizing questions
pass through the whole of physics. The new laws are sometimes called ”emergent”, while the laws at a lower level
”fundamental” or ”first principles”. It should be emphasized that more often than not, we cannot derive the emergent
laws from the first principles. In the ”derivation” there is almost always a tacit assumption that should be taken
for granted. However, often one can get sufficiently close to the actual derivation of the emergent laws in order to
determine their form.

A very important notion for deriving the laws at higher level from the laws of the lower level is time scale separation.
Time scale separation holds when the system can be characterized by two sets of variables with vastly different
dynamical time-scales. To identify the sets one looks for the variables with large time-scale of the dynamics, i. e. slow
variables. For example, such variables could be provided by ”almost” integrals of motion that is variables that become
integrals of motion when a certain limit in the parameters of the system is taken. Once the separation into slow and
fast variables is done, one eliminates the time-scales associated with the fast dynamics to derive an approximate
closed dynamics for the slow variables(reduced dynamics). Still the dynamics is closed only approximately and it has
corrections due to the impact of the discarded fast variables. It turns out that often the remaining effect of the fast
variables can be described by adding some noise to the equations which turns the dynamics of the slow variables into
a stochastic equation.

An important property that emerges often when passing to the reduced dynamics is irreversibility. Suppose that
at some initial moment of time, we know the value of the variables of the reduced dynamics but we have discarded
the values of the rest of the variables of the system. As the system evolves, our uncertainty about the value of the
variables of the reduced dynamics, which was initially equal to zero, grows. This is because different initial values of
the discarded variables become consistent with more and more values of the variables of the reduced dynamics. Such
loss of information is described by the increase in entropy. Here we rely on the interpretation of the entropy as a
measure of the missing information on the system that comes from the information theory providing an alternative
outlook on the statistical physics in equilibrium. On the formal level, the growth of the entropy is caused by the noise
terms in the equations.

Let us illustrate some of the notions above by a simple example.
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II. THE SIMPLEST CASE OF TIME SEPARATION AND EMERGENT DYNAMICS: WEAKLY
PERTURBED HARMONIC OSCILLATOR

A simplest example of time separation is provided by the harmonic oscillator perturbed by weak linear damping.
In rescaled variables the oscillator equation is given by

ẍ + εẋ + x = 0, (1)

where x(t) is the coordinate. The exact solution is well-known

x(t) = Ae−εt/2 cos

[√
1− ε2

4
t + Φ

]
, (2)

where A and Φ are constants. We see that at ε ¿ 1 there appear two vastly separated time-scales in the dynamics:
the natural frequency time-scale of order one and the damping time-scale 1/ε. At a time-scale of order one the motion
of the oscillator is very close to the motion of the undamped oscillator. If we make the local harmonic oscillator
substitution

x(t) = a(t) cos [t + φ(t)] , (3)

then at a time-scale of order one, both a(t) = A exp[−εt/2] and φ(t) ≈ Φ− ε2t/2 are ”almost constant”. We may refer
to a(t) and φ(t) as slow variables. Now let us assume we were only interested in the gross dynamics occurring at a
time-scale much larger than one. At this time-scale the main qualitative feature of the dynamics is the decay of the
energy of the unperturbed oscillator E(t) ≡ ẋ2/2 + x2/2. Substituting into E(t) the expression (2) for x(t) we have

E(t) =
A2e−εt

2
+

A2ε2e−εt cos2
[√

1− ε2

4 t + Φ
]

8
+

A2
[√

1− ε2/4− 1
]
e−εt sin2

[√
1− ε2

4 t + Φ
]

8
. (4)

If we are not interested in the small fast wiggles around the main term, we obtain just E(t) ≈ A2 exp[−t]/2. Let
us show now that we could obtain this simple result without employing the exact solution. We note that the exact
equation of the energy decay is Ė = −εẋ2, where ẋ2 term changes at the time-scale of order one. However, due to the
prefactor ε, the energy varies at the time-scale 1/ε. To use the separation of time-scales we introduce the operation
of partial time-averaging

〈E〉∆t(t) ≡
∫ t+∆t

t

dt′

∆t
E(t′), (5)

where ∆t is a separation time-scale satisfying 1 ¿ ∆t ¿ 1/ε. Note that partial time-averaging commutes with
derivative:

d

dt
〈g〉∆t(t) =

d

dt

∫ t+∆t

t

dt′

∆t
g(t′) =

g(t + ∆t)− g(t)
∆t

=
∫ t+∆t

t

dt′

∆t

dg

dt′
(6)

where g(t) is an arbitrary function of time. Due to ∆t ¿ 1/ε we have E(t) ≈ 〈E〉∆t(t), and we can write

dE

dt
≈ d

dt
〈E〉∆t =

∫ t+∆t

t

dt′

∆t

dE

dt′
= −ε

∫ t+∆

t

dt′

∆t
ẋ2. (7)

Next we note that at the time-scale ∆t ¿ 1/ε, the coordinate x(t) behaves as harmonic oscillator with energy which
is approximately E(t) and the period of oscillations close to one. As a result we have

∫ t+∆t

t
ẋ2dt′/∆t ≈ E(t) and the

above equation reproduces the approximate exponential decay law of the energy.
While in the above simple example the use of the averaging method is of course not necessary, the method becomes

a powerful tool of analysis of the general problem of perturbed harmonic oscillator

d2x

dt2
+ x = εf

(
x,

dx

dt

)
, (8)

where f is some function characterizing the perturbation. The general approach is as follows. The above system is
equivalent to a system of ODE in the phase space with two degrees of freedom

ẋ = y, ẏ = −x + εf(x, y), (9)
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where y = ẋ. To treat this system we note that at small ε, at time-scale of order one, the motion is very close to the
motion of harmonic oscillator. To use this we make the local harmonic oscillator substitution of variables x = a cos θ
and y = −a sin θ (at ε = 0 we have a = const and θ = t + const). The substitution separates variables of the system
into slow ones (the amplitude) and fast ones (the phase). The substitution can be viewed as the introduction of polar
coordinates in the phase plane of the system and it is equivalent to the method of variation of parameters. We have

ȧ cos θ − aθ̇ sin θ = −a sin θ, −ȧ sin θ − aθ̇ cos θ = −a cos θ + εf (a cos θ,−a sin θ) , (10)

or

ȧ = −ε sin θf (a cos θ,−a sin θ) , θ̇ = 1− ε cos θf (a cos θ,−a sin θ)
a

. (11)

To use the separation of time-scales of a and θ, we note that the equation on the amplitude is similar to the equation
on the energy E(t) above: the time derivative is proportional to the small parameter times some function including
fast oscillating factors cos θ and sin θ. Again we eliminate fast dynamics taking place at time-scale of order one by
partial time averaging of the above equations over a time-scale ∆t obeying 1 ¿ ∆t ¿ 1/ε. Performing partial time-
averaging of Eqs. (11) and using ȧ ≈ 〈ȧ〉∆t and θ̇ ≈ 〈θ̇〉∆t, where the last equality follows from the slowness of θ − t
rather than θ itself, we obtain the approximate dynamics

da

dt
= F [a(t)],

dθ

dt
= ω[a(t)], (12)

where

F ≡ −ε

∫ t+∆

t

dt′

∆t
sin θ(t′)f [a(t′) cos θ(t′),−a(t′) sin θ(t′)] ≈ −ε

∫ 2π

0

dφ

2π
sin φf [a(t) cos φ,−a(t) sin φ] , (13)

and the effective frequency of oscillations ω is

ω ≈ 1− ε

a(t)

∫ 2π

0

dφ

2π
cos t′f [a(t) cos φ,−a(t) sin φ] . (14)

The inequality 1 ¿ ∆t ¿ 1/ε is crucial for the above manipulations - ∆t ¿ 1/ε allows to consider a(t) as constant
during the time interval of the integration, while 1 ¿ ∆t allows us not to care about the modulation of the phase
θ(t) ≈ t in the integrand and it allows to substitute the time average by the average over the period. The resulting
evolution of a and θ provides an approximation to the true evolution similar to approximating E(t) in Eq. (4) by the
first term. To give an example of the use of the above procedure, consider the so-called Van der Pol oscillator

d2x

dt2
+ x = ε(1− x2)

dx

dt
, (15)

that corresponds to f(x, y) = (1 − x2)y in Eq. (8). The above equation first appeared in engineering and later was
found useful as an example of deterministic chaos. At small damping, ε ¿ 1 we may use the averaging method for
the study of the oscillator motion. We find

F = εa

∫ 2π

0

dφ

2π
sin2 φ

[
1− a2 cos2 φ

]
=

ε

8
a(4− a2), w = 1 + ε

∫ 2π

0

dφ

2π
cosφ sin φ

[
1− a2 cos2 φ

]
= 1. (16)

We conclude that at a time-scale long compared with the time-scale of fast oscillations, in the leading order in ε, the
dynamics of Van der Pol oscillator takes the form

da

dt
=

ε

8
a(4− a2),

dθ

dt
= 1. (17)

Thus the motion of the system consists of oscillations with the natural frequency and slowly modulated amplitude
changing according to the first of the equations above. We observe that the amplitude evolves until it stabilizes at
a = 2 where the system has a limit cycle.

The dynamics described by Eq. (17) is not of of the general form (12) - for Van der Pol oscillator the correction
to the frequency vanishes in the leading order in ε and appears only in higher orders. You are invited to consider a
different situation in the problem set.
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To check that the reduced dynamics (12) is reasonable let us consider the case where the perturbation is such
that the system remains Hamiltonian. This is the situation where f(x, dx/dt) in Eq. (8) is function of x only,
f(x, dx/dt) = f̃(x). In this case we have

F = −ε

∫ 2π

0

dφ

2π
f̃ [a(t) cos φ] sin φ = 0, (18)

where the last identity is easily seen with the help of change of variables φ = 2π − α:
∫ 2π

0

dφ

2π
f̃ [a(t) cos φ] sin φ =

∫ 2π

0

dα

2π
f̃ [a(t) cos(2π − α)] sin(2π − α) = −

∫ 2π

0

dα

2π
f̃ [a(t) cos α] sin α. (19)

Thus the reduced dynamics (12) produces constant amplitude ȧ = 0 in the case of Hamiltonian systems. This is just
what we should get on general grounds: we deal with a one-dimensional mechanical system where the form of the
potential imposes a finite periodic motion with constant amplitude. The motion is however not purely sinusoidal and
the amplitude is a non-trivial function of ε and initial conditions.

Let us now learn the main lesson of this section. We have started with dynamics in two dimensional phase space
which is described by Eqs. (9). Then we passed to different variables in the phase space. These variables have the
special property of time separation: the time-scale τs of variations of one variable (slow variable) is much larger than
the time-scale τf of variations of the other (fast variable), τs À τf . We eliminated the dynamics at the time-scale of
the fast variable by averaging over a separation time-scale ∆t satisfying τf ¿ ∆t ¿ τs. Thanks to the separation
of time-scales, the obtained dynamics is again local in time. Moreover, the dynamics of the slow variable is closed,
ȧ = F (a), while the dynamics of the fast variable is driven by the slow variable, θ̇ = ω(a). One says that the fast
variable is enslaved by the slow one. Thus we passed from the original, local in time dynamics, to the reduced or
emergent dynamics that takes place at a long time-scale but it is again local in time. This new dynamics admits
simple interpretation in our case. Let us consider how the position of the phase space point (x(t), y(t)) changes
according to Eqs. (9). After the time interval equal to the period 2π of the unperturbed oscillator the phase space
point almost returns to the same position but both its amplitude a and its phase θ (the latter considered modulo 2π)
possess certain increments due to small but finite ε. After another period 2π, the variables acquire additional small
increments and so further. The expression for these increments constitutes the basis for a new dynamics that due to
the increments smallness again has the form of ODE local in time. This is the reason why the reduced dynamics (12)
is determined by integrals (13) and (14) over the period 2π. The emergent dynamics is a significant reduction in the
complexity of the problem.

The above paradigm of separating the phase space variables into fast and slow ones and writing an effective closed
dynamics for the slow variables is very important for the understanding of the equations appearing in the kinetic
theory. Moreover, the paradigm is important for the understanding of the general question in physics: how comes
that we can describe certain domain of situations without knowing the fundamental laws of nature to the end? The
answer is that at every level new effective laws can be formulated where all physics at the more fundamental level
is absorbed in some constants or functions (this is in accord with the ideas of renormalization group). In the case
considered in this section, the dynamics at the ”fundamental” level is determined by a function of two variables
f(x, y) appearing in Eqs. (9) while the dynamics at the next level of complexity is determined by two functions of
one variable, F (a) and ω(a), appearing in Eq. (9). In passage from one level to another, loss of information occurs -
different f(x, y) may result in the same F (a) and ω(a), so that observations of the dynamics at long time-scale would
give us no access to the fundamental dynamics of the system.

III. THERMODYNAMICS AND TIME SEPARATION

Time separation is also essential for understand the equations governing ordinary thermodynamic processes. Some
of those equations can be actually derived if one knows how to perform the partial time averaging the molecular
time-scales associated with molecular motion. There exists an important class of systems where such averaging can
be performed explicitly. These are the so-called ergodic systems. Below we consider some thermodynamic processes
and show how the relations describing them arise from the ergodicity assumption.

Recall that thermodynamics distinguishes two kinds of processes: reversible and irreversible ones. A reversible
process is quasi-static so that the system always remains infinitesimally close to the thermodynamic equilibrium. For
each step of a reversible process, the state variables have a well-defined meaning. How do we decide which process is
quasi-static and which not? It is clear that the process must be slow, but how slow?

Before we address the above question, let us illustrate it using the example of an adiabatic thermodynamic process.
During such a process the system is insulated and its dynamics is determined by a Hamiltonian H[p, q, λ(t)] (here
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and below p and q will stand for all momenta and coordinates of the system). The change of the equilibrium state of
the system is caused by the change of the external parameter λ(t). A most familiar example of the parameter λ is the
volume V of the system, when the process takes place due to a change of the system volume at thermally insulated
walls (note that in Hamiltonian formalism the system volume can be represented as infinite potential barrier at the
walls of the container). More generally, λ(t) can be any external field. For adiabatic thermodynamic process the
question asked in the previous paragraph is: what are the conditions on λ(t) such that the resulting thermodynamic
process is quasi-static?

Let us recall that thermodynamics deals with systems possessing the property of relaxation to equilibrium. The
relaxation can be characterized by a finite time τrel such that after that time, at fixed external conditions, the
system is in equilibrium whatever its initial condition was. The time-scale τrel allows to formulate the answer to the
questions asked above: quasi-static process is a process that takes place at a time-scale T much larger than τrel. Let
us explain the answer using the example of adiabatic thermodynamic process. The time-scale T of the process can
be introduced by setting λ(t) = f(t/T ) where f(t) varies at a scale of order one. During a separation time-scale ∆t
obeying τrel ¿ ∆t ¿ T (cf. the previous section), the Hamiltonian of the system can be considered constant due
to ∆t ¿ T . On the other hand, due to τrel ¿ ∆t during the time-scale ∆t the system relaxes to the equilibrium of
a closed system which Hamiltonian is given by H[p, q, λ(t)] ”frozen” at the local time. In other words, during the
process the system is all the time in equilibrium with parameters of equilibrium (such as the system energy E(t) or
λ(t) itself) being functions of time that change at a time-scale T . On the other hand, if we dealt with a fast process
with T < τrel the system would be locally out of equilibrium and the process would not be quasi-static.

Much insight into the nature of adiabatic thermodynamic process can be reached for ergodic systems. Ergodic
systems are closed systems which phase space trajectory wanders over the whole surface H(p, q) = const so that the
ergodic theorem holds:

lim
T0→∞

1
T0

∫ T0

0

f(p, q, t)dt = Kδ(H(p, q)− E0), (20)

where K is the normalization factor,

K−1 =
∫

dpdqδ(H(p, q)− E0), (21)

E0 is the conserved energy of the system and f(p, q, t) = δ (p− p(t)) δ (q − q(t)) is the exact distribution function
of the system. The above microcanonical distribution implies the usual relation for the time-average of a function
F [p(t), q(t)] of the phase space variables:

lim
T0→∞

1
T0

∫ T0

0

F (p(t), q(t))dt = lim
T0→∞

1
T0

∫ T0

0

dt

∫
dpdqF (p, q)f(p, q, t) = K

∫
dpdqF (p, q)δ(H(p, q)− E0),

where it is assumed that the orders of the integration and the limit are interchangeable. For ergodic systems the
relaxation time τrel is given by the characteristic value of T0 at which the limit in Eq. (20) saturates,

1
τrel

∫ τrel

0

f(p, q, t)dt ≈ Kδ(H(p, q)− E0), (22)

where the approximate equality is considered in the sense that integrals of both sides with an arbitrary smooth
function F (p, q) are approximately equal. The time τrel can be seen as a characteristic time at which the system
trajectory ”fills” the surface H(p, q) = const. Now if we consider adiabatic thermodynamic process for an ergodic
system we have

1
∆t

∫ t+∆t

t

f(p, q, t′)dt′ ≈ K(t)δ [H(p, q, λ(t))− E(t)] , K−1(t) =
∫

dpdqδ(H(p, q)− E(t)), (23)

where E(t) is the thermodynamical energy of the system. Indeed, by definition of τrel for ergodic system, due to
∆t À τrel the limit above should saturate at the microcanonical distribution of the system with the locally constant
(by ∆t ¿ T ) Hamiltonian H[p, q, λ(t)]. Returning to the general case, the conclusion is that a process is quasi-
static if it takes place at a time-scale much larger than the relaxation time of the system, T À τrel. During the
process thermodynamic variables like E(t) and V (t) vary at a time scale much larger than τrel. Time variation
of other thermodynamic functions can be inferred from the equation of state, like in the relation for the pressure
p(t) = p[E(t), V (t)], where the function p(E, V ) describes the equation of state of the system.
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We conclude that thermodynamics implies that when a macroscopic system undergoes a slow process, one can
introduce a limited number of variables which obey a closed dynamics. These variables by themselves change slowly,
in other words they are slow variables. Could we guess from mechanics that for a macroscopic system the consideration
of slow processes (such as those occurring at the human time-scale) allows to perform an overwhelming reduction
in the number of variables and to perform a reduced description of the system? To approach this question, let us
consider again an adiabatic thermodynamic process. This choice is the simplest since the system is governed by a
closed Hamiltonian dynamics during the process. Taking for definiteness the case where λ is the volume, at each
moment of time we may characterizethe system by two thermodynamic state variables: the volume V (t) and the
energy E(t). These variables, however, are not independent: the entropy S is conserved in the adiabatic process and
thus the equation

S [V (t), E(t)] = S0, S0 ≡ S [V (0), E(0)] , (24)

should hold. In particular, if one knows the equation of state in the form S = S(E, V ) the above allows to determine
the evolution of system energy for given evolution of the volume. Thus thermodynamics leads to the conclusion that
a thermally insulated system, characterized by a Hamiltonian with a slowly varying volume, has an approximate
integral of motion which is a function of the system energy and volume only.

The above statement on the existence of an approximate integral of motion is a clear statement about the mechanics
of the system. Somehow it means that a macroscopic system should have a dynamical property which is not so evident
from the viewpoint of dynamics itself. Could we return to the dynamical description and rederive the conclusion?
In general this is very hard - it is just one of the cases where the emergent laws (laws of thermodynamics) lead to
a conclusion that would be very hard to derive from the laws at the more fundamental level. However, for ergodic
systems, it is possible to deal with the question. In the derivation below we suppress the small parameter of the
expansion ε which is the (slow) rate of the macroscopic process of the volume variation, V (t) ≡ f̃(εt).

Let us study the time-derivative of E(t) for an ergodic system. We have

dE

dt
=

d

dt
H [p(t), q(t), V (t)] =

∂H

∂V
[p(t), q(t), V (t)]

dV

dt
, (25)

where we used that p(t) and q(t) obey Hamilton equations of motion. Let us note that E(t) changes at least at the
time-scale of V (t), so that E(t) ≈ 〈E〉∆t(t). This allows us to write

dE

dt
≈ dV

dt

∫ t+∆t

t

dt′

∆t

∂H

∂V
[p(t′), q(t′), V (t)] , (26)

where we do not account in the averaging for the factors that vary at the time-scale T À ∆. Now we can use the
ergodic theorem to write

dE

dt
=

dV

dt
K(t)

∫
dpdq

∂H

∂V
[p, q, V (t)] δ [H (p, q, λ(t))− E(t)] . (27)

The above equation allows an equivalent rewriting as

Φ [E(t), V (t)] = const, (28)

where Φ(E, V ) is the volume of the phase space with energy smaller than E, at the system volume V ,

Φ(E, V ) =
∫

dpdq

(2π~)3N
θ [E −H(p, q, V )] . (29)

Above N is the number of degrees of freedom of the system and the factor (2π~)3N is introduced for convenience in
the following. We have

dΦ(E(t), V (t))
dt

=
dE

dt

∫
dpdq

(2π~)3N
δ (E −H(p, q, V ))− dV

dt

∫
dpdq

(2π~)3N

∂H

∂V
[p, q, V (t)] δ [H(p, q, V (t))− E(t)] = 0,

where we used Eqs. (23) and (27). Any other parameter in the Hamiltonian could be used above instead of V . Thus we
have shown that when a parameter in the Hamiltonian of an ergodic system changes at a time-scale much larger than
τrel then the phase space volume Φ is approximately constant. In mechanics quantities that remain approximately
constant under slow transformation of a parameter in the Hamiltonian are called adiabatic invariants. Since Φ is
constant only for ergodic systems, it is referred to as ergodic adiabatic invariant. Its conservation can be traced to the
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Liouville theorem stating that the volume in the phase space is preserved under the motion governed by the Hamilton
equations. As a result, the initial microcanonical distribution, which is singular at the surface of constant energy, is
transformed by the considered process into another microcanonical distribution also singular at some surface in such
a way that the volume enclosed by the surface is preserved. This preservation is tantamount to Eq. (28).

Equations (24) and (28) suggest that for ergodic systems entropy is a function of Φ. The appropriate definition is
(in this course we shall set kB = 1):

S(E, V ) = lnΦ(E, V ). (30)

For large systems the above definition is equivalent to the famous Boltzmann formula S = ln W where W ≈ ∆E∂EΦ
is the number of states available to the system with energy in the window (E, E +∆E). The equivalence follows from
W ∼ exp[Es(E/V )] leading to Φ ∼ exp[Es(E/V )] with difference in prefactors giving subleading corrections (roughly
logarithm of a volume of a ball in a high-dimensional space is close to the logarithm of the volume of a spherical layer
with the same radius).

Thus for a thermally insulated system, entropy S defined by Eq. (30) is a quantity that changes slower than
macroscopic parameters of energy and volume. When the system is not thermally insulated, one can expect S to vary
at the time-scale of heat exchange which is the same as the time-scale of variations of the energy and the volume. In
other words, this allows to expect on the basis of mechanics that S is a slow variable in thermodynamic processes.

The idea to use the definition (30) for the entropy and to approach the equilibrium statistical mechanics on the
basis of adiabatic invariants was introduced by Hertz in 1910. Whilst the approach was appreciated by Einstein, it
remains a less known one today. To demonstrate the utility of the above definition we have to examine the second
law of thermodynamics with its help. The latter consists essentially of two parts: the statement that there exists an
integrating factor 1/T such that δQ/T is an exact differential dS, and the principle of entropy increase for a closed
system. Let us first address the former part of the second law.

A. Generalized Helmholtz theorem

To construct the dynamical version of the first part of the second law we must first construct the temperature T .
A natural definition of T is provided by the equipartition theorem that states that for any system which Hamiltonian
is the sum of the kinetic energy Ekin and the potential energy having no dependence on particle velocities, one has

T =
2

3N
lim

T0→∞
1
T0

∫ T0

0

Ekin(t)dt. (31)

For ergodic system T allows a simple explicit expression:

T =
2

3N
K

∫
dpdqδ (E −H(p, q, V ))Ekin =

1
3N

K

∫
dpdqδ (E −H(p, q, V ))p · ∂H

∂p

= − 1
3N

K

∫
dpdqp · ∂

∂p
θ (E −H(p, q, V )) = KΦ(2π~)3N , (32)

where in the last line we performed integration by parts. Noting from Eq. (21) that K−1 = (2π~)3N∂EΦ we may
rewrite the above expression as the fundamental thermodynamic relation T−1 = ∂ES with S defined by Eq. (30).
This gives another confirmation of the adequacy of the latter definition.

Let us now show that 1/T is an integrating factor for dE + pdV by showing explicitly that (dE + pdV )/T is a
differential of a function of state. This function is nothing but S defined in Eq. (30). We have

dS =
∂S

∂E
dE +

∂S

∂V
dV =

dE

T
+

∂S

∂V
dV, (33)

where
∂S

∂V
= − 1

Φ

∫
dpdq

(2π~)3N
δ (E −H(p, q, V ))

∂H

∂V
[p, q, V ] =

p

ΦK(2π~)3N
=

p

T
. (34)

In the last line we used the definition of pressure and ergodicity:

p = − lim
T0→∞

1
T0

∫ T0

0

∂H

∂V
[p(t), q(t), V ] dt = −K

∫
dpdqδ (E −H(p, q, V ))

∂H

∂V
[p, q, V ] . (35)

The above proves that for ergodic systems (dE +pdV )/T is an exact differential, (dE +pdV )/T = dS with S given by
Eq. (30). The last statement has the name of generalized Helmholtz theorem as it generalizes an analogous relation for
one-dimensional systems that was derived by Helmholtz. The crucial part in the above derivation is the representation
(32) for the temperature.
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B. The second law of thermodynamics

Once we have provided a mechanical definition for the entropy, it is natural to inquire if it can reproduce the
statement of the second law of thermodynamics that the entropy of the closed system never decreases and it is
maximal in equilibrium. And obviously, it is not - for fixed energy S defined by Eq. (30) is always constant. However,
this does not yet signify that one cannot approach the second law with the definition (30). The reason is that once
one tries to approach the second law from the view-point of dynamics of a system with a finite number of degrees of
freedom, different formulations of the second law need no longer be equivalent. They only become so in the limit of
the infinite number of degrees of freedom. Here we will show that a a particular formulation of the second law does
hold for Eq. (30) while at home you are invited to demonstrate another formulation using similar techniques.

The Clausius principle of the entropy increase states that for a thermally isolated system which begins and ends
in an equilibrium state, the entropy of the final state is greater than or equal to that of the initial state, where the
equality holds if the process is quasi-static. The statement was already verified for quasi-static processes for Eq. (30),
now we generalize. Although one can continue using the framework of classical statistical mechanics, we now deal
with the question within quantum statistical mechanics - both for illustrative purposes and to provide methods for
solving the problem set.

We first introduce the quantum version of the definition (30). We note that Bohr-Sommerfeld quantization condi-
tions suggest that Φ can be approximated by N + 1/2, where N is the number of states with energy smaller than E.
To introduce the quantum version of (30), we define the time-dependent quantum number operator

N̂(t) ≡
Ktot∑

k=0

k|k, t >< k, t|, (36)

where Ktot is the total (possibly infinite) number of the energy levels and |k, t > are the eigenstates of the Hamiltonian,
Ĥ[p, q, λ(t)] =

∑Ktot

k=0 εk(t)|k, t >< k, t|. For the above definition to provide the correct quantum number at any t, it
will be assumed that energy levels are non-degenerate and there is no level crossing, i.e. εk(t) remain ordered at any
t. We now define the quantum entropy operator

Ŝ(t) ≡ ln
(

N̂(t) +
1
2

)
. (37)

In fact, the factor 1/2 is not needed for the following proof of the Clausius principle but we shall keep it to be in
accord with the original proposition by Campisi. Note that in contrast to the Hamiltonian’s spectrum, the spectrum
of Ŝ(t) is the same at any t. The Campisi definition is alternative to von Neumann’s one −Trρ̂ ln ρ̂, where ρ̂(t) is the
density matrix. The von Neumann entropy would remain constant and would not satisfy the Clausius principle. Since
the system is initially in equilibrium, ρ̂(0) commutes with Ĥ(0) and can be written as ρ̂(0) =

∑Ktot

k=0 pk|k, 0 >< k, 0|.
We make an important assumption that the eigenvalues of ρ̂(0) constitute a non-increasing function of the energy
level number:

pm ≥ pn, if m < n. (38)

In particular the above equation holds if the initial distribution is the Gibbs distribution pk ∝ exp[−εk/T ] (this is
the case if the system was put in contact with a thermal bath at temperature T and later decoupled from the bath).
We now pass to the demonstration of the Clausius principle for a process that starts at t = 0 and ends at t = tf .
Variation in the Hamiltonian causes a transition between the quantum states according to the transition probabilities

|akn(tf )|2 = | < n, tf |Û(tf )|k, 0 > |2, (39)

where Û(t) is the unitary time evolution operator. As a result the density matrix evolves to ρ̂(tf ) = Û(tf )ρ̂(0)Û+(tf ).
Let us consider the change in the expectation value of the entropy operator,

Sf − S0 = Tr
[
ρ̂(tf )Ŝ(tf )− ρ̂(0)Ŝ(0)

]
. (40)

Using that the spectrum of Ŝ is always the same we have

Trρ̂(tf )Ŝ(tf ) =
Ktot∑
n=0

< n, tf |ρ̂(tf )|n, tf > ln(n + 1/2) =
Ktot∑
n=0

p′n ln(n + 1/2) (41)
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where the probability p′n =< n, tf |ρ̂(tf )|n, tf > for the system to be found in the state |n, tf > is the sum p′n =∑Ktot

k=0 pk|akn(tf )|2 describing the contributions of transitions from initial states |k, 0 > [formally this follows from
ρ̂(tf ) = Û(tf )ρ̂(0)Û+(tf )]. Thus we can represent Eq. (40) as

Sf − S0 =
Ktot∑
n=0

(p′n − pn) ln(n + 1/2). (42)

We now use the summation by parts formula for the series,

N∑
n=0

anbn = aN

N∑
n=0

bn −
N−1∑
m=0

[am+1 − am]
m∑

n=0

bn. (43)

The proof of the above formula can be obtained by representing bn as a ”derivative”, bn = Bn − Bn−1 where
Bn ≡

∑n
k=0 bk for n ≥ 0 and B−1 = 0. The resulting series

∑N
n=0 an(Bn − Bn−1) can be written as

∑N
n=0[anBn −

an−1Bn−1]−
∑N

n=0[an− an−1]Bn−1 = aNBN −
∑N−1

n=0 [an+1− an]Bn equivalent to the formula above. Using Eq. (43)
and the conservation of probability in the form

∑Ktot

n=0 (p′n − pn) = 0, we may rewrite Eq. (42) as

Sf − S0 =
Ktot∑
m=0

ln
(

m + 3/2
m + 1/2

) m∑
n=0

(pn − p′n). (44)

We have

m∑
n=0

(pn − p′n) =
m∑

n=0

pn −
m∑

n=0

Ktot∑

i=0

pi|ain(tf )|2 =
m∑

n=0

pn

(
1−

m∑

i=0

|ain(tf )|2
)
−

m∑
n=0

Ktot∑

i=m+1

pi|ain(tf )|2. (45)

The transition probabilities obey
∑Ktot

k=0 |akn(tf )|2 =
∑Ktot

n=0 |akn(tf )|2 = 1 so that 1 − ∑m
i=0 |ain(tf )|2 ≥ 0. Then,

combining the equation above and the ordering of probabilities (38), we find

m∑
n=0

(pn − p′n) ≥ pm

m∑
n=0

(
1−

m∑

i=0

|ain(tf )|2
)
− pm

m∑
n=0

Ktot∑

i=m+1

|ain(tf )|2 = mpm − pm

m∑
n=0

Ktot∑

i=0

|ain(tf )|2 = 0. (46)

It follows that the RHS of Eq. (44) is a sum of non-negative terms and we have obtained that

Sf ≥ S0. (47)

Clearly the equality occurs only if p′n = pn. This is just the case of an adiabatic thermodynamic process where no
transitions occur between the states with different quantum number so that |ain(tf )|2 = δin and Sf = S0 holds.
Note that, like the Clausius principle itself, the above derivation does not claim that the expectation value of Ŝ is
a monotonically increasing function of time. It can still be true that S1 < S2 for t1 > t2 > 0 despite S1 > S0 and
S2 > S0. What distinguishes the t = 0 moment here is that ρ̂(t = 0) is diagonal in the energy representation, while
ρ̂(t) generally not.

Whenever one comes across a mechanical proof that the expectation value of some operator grows monotonically,
the question comes what breaks the time-reversal symmetry. In our case, the symmetry is broken by the assumption
of the ordering of probabilities (38). In particular, if the assumption would be reversed to pm < pn, the converse
conclusion of decrease of entropy would be obtained. This is in accord with the fact that pm < pn corresponds to
inverse population and negative temperature states that do not occur naturally.

C. Summary

To summarize this section, we have seen that combining the assumption of ergodicity with the averaging method,
one can reach a rather deep insight into the laws of thermodynamics starting with the microscopic dynamics. The
method of thermodynamics as it is viewed dynamically is to introduce a certain set of variables that change slowly on
the macroscopic time-scale. This is in contrast to immediate dynamical variables of the system, such as momenta or
coordinates of the particles, which undergo rapid, “chaotic” changes. The variables in question are not just generalized
coordinates, that is they are not necessarily functions on the phase space of the system (that is variables of the form
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F [p(t), q(t)], which are completely determined by the instantaneous state of the system). Rather these variables may
be functionals of the motion of the system, that is their value may be determined by the whole trajectory of the
system. An immediate example is pressure that from mechanical viewpoint represents a time-averaged force exerted
on the system boundaries. During the course we shall encounter other types of such generalized characteristics of the
system.

IV. BROWNIAN MOTION, LANGEVIN EQUATION AND EINSTEIN-STOKES RELATION

It is the core issue of the equilibrium statistical mechanics that when one looks at a macroscopic system in equi-
librium then, while the system undergoes wild changes at the microscopic scale, at the macroscopic scale things are
calm and smooth. One of the first observable effects of the invisible atomic motion that was discovered is Brownian
motion. In 1829 a botanist Robert Brown observed fast irregular motions performed by tiny particles of plant pollen
dispersed in water. This motion looked mysterious: one takes still water, puts small particles in it and they start to
move. The resolution of the mystery with the help of the atomic hypothesis (contributed essentially by Einstein) was
among the strongest arguments in favor of the existence of atoms before their more direct observation.

The theory of Brownian motion is one of the most important topics in non-equilibrium statistical physics because of
its many extensions to situations where ”Brownian particle” is not a particle at all but rather some collective property
of a macroscopic system. Let us pass to this theory.

A. The setting of the problem

First we’d better address the question what a Brownian particle is. Normally, by a Brownian particle we mean a
macroscopic particle immersed in a fluid. The particle size is supposed to be much larger than the correlation length
beyond which the hydrodynamic description of the fluid motion applies (more details on this will be supplied below),
while the particle mass is supposed to be larger than the mass of the particles comprising the fluid. Essentially by
definition, a Brownian particle is a particle such that its velocity v(t) is a slow variable. Here slowness means that the
relaxation time of the fluid τrel must be much smaller than the characteristic time-scale of the variations of velocity.

The slowness of the velocity variable can be illustrated by the following mechanical model of the Brownian motion.
Within the model, the system ”particle plus fluid” is described by the Hamiltonian

H =
N∑

i=1

p2
i

2m
+

∑

j>i

V (ri − rj) +
p2

2M
+

∑

i

U(ri − r), (48)

where ri, pi are coordinates and momenta of N identical fluid particles with mass m while r and p are the coordinate
and the momentum of the Brownian particle which mass M obeys M À m. Such properties as finite size of the
Brownian particle could be accounted by setting U(r) = 0 at r > a and U(r) = ∞ for r < a. Here a is the radius of
the particle which is assumed spherical for simplicity.

The key to the solution of the problem is the inequality m/M ¿ 1. The limit m/M → 0 is the limit of an infinitely
heavy Brownian particle. Such a particle would keep its velocity v constant despite the interaction with the fluid.
After the relaxation time τrel the fluid will be in the stationary (equilibrium-like, see below) state corresponding to
the particle moving in it with the speed v. At a small but finite value of m/M the velocity v does change but it takes
a characteristic time τ much larger than τrel before the velocity changes appreciably. As long as we consider values
of m/M corresponding to τ À τrel, the fluid is in the local stationary state which parameter v(t) changes in time
slowly.

To make the above less abstract consider the example where Brownian particle is a big ball colliding with small
balls constituting a gas. In a gas one can speak of individual collisions of gas molecules with the Brownian particle.
A single collision disturbs the velocity of the big ball insignificantly and it takes lots of collisions before there is an
effect. As a result the gas reaches steady state corresponding to v(t) before the latter changes significantly. Note an
important feature that the change in v(t) is caused by a collective effect of numerous collisions experienced by the
particle. In this sense, the dynamics of v(t) is a collective property of the fluid.

Our purpose in this Section is to write down an effective equation for the dynamical variables of the Brownian
particle, r and p. This equation however will not correspond to the ordinary deterministic classical dynamics. To
see that this is plausible, note that at the moment we introduce the Brownian particle into the fluid we know r and
p, but we do not know the coordinates and momenta of the fluid - they are random with the probability distribution
described by the equilibrium statistical mechanics. Since the fluid can be in many different microscopic states, many
possible trajectories of the particle can arise from macroscopically the same initial situation. As a result we can only
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speak of probabilities of different trajectories. These are described by random dynamics where different forces have
different probability weight. We now start the derivation.

B. The equation of motion of the Brownian particle, part I

The exact equation of motion of the Brownian particle is of course

dv

dt
=

F

M
, (49)

where F is the force exerted on the Brownian particle by the fluid. The main assumption of the theory of Brownian
motion is that the relaxation time of the fluid τrel is much smaller than the characteristic time τ of variations of v(t).
Thus performing the partial time averaging in the same way as we did in the previous sections we may write

dv

dt
=

1
M

∫ t+∆t

t

dt′

∆t
F (t′)|v(t′)=const=v(t), (50)

where τrel ¿ ∆t ¿ τ and the subscript signifies that the time average is taken at constant velocity of the particle,
equal to v(t) in the whole time interval (t, t+∆t). The above inequality uses only the ∆t ¿ τ part of τrel ¿ ∆t ¿ τ .
Using now that τrel ¿ ∆t, we conclude that the above time average can be approximated by the time average over
an infinite time interval (cf. the definition of the relaxation time in the previous Section), so that

dv

dt
≈ 1

M
lim

T0→∞

∫ t+T0

t

dt′

T0
F (t′)|v(t′)=const=v(t) ≡ Fav[v(t)], (51)

Above Fav(v) is the average force that acts on the Brownian particle that moves in the fluid at a constant velocity v
(where some external forces are needed to sustain the motion, see below). The expression for the force Fav(v) can be
obtained within the framework of hydrodynamics.

C. The average component of the force

What is the state of the fluid provided there is a particle moving in it a constant velocity? To answer this question
one can use the approximation of an infinite fluid, where the fluid is at rest at infinity while in the region near the
particle the fluid is disturbed in some way. We understand that the state of the fluid cannot be a complete equilibrium:
there must be a friction force exerted on the particle so that in contrast to equilibrium we must constantly supply
energy to the system to keep the particle going. Still, the state of the fluid can be described as a generalization of the
equilibrium state, the so-called local equilibrium state, where locally in space and time the fluid can be considered in
equilibrium. The evolution of the local parameters of equilibrium is described by the equations of hydrodynamics that
we will consider later in the course. Here we shall only use the result of the hydrodynamic analysis, the so-called Stokes
law. This applies where the velocity is not too large so that the situation can be considered as a near-equilibrium
one, as is the case of the theory of Brownian motion. The law expresses the friction force exerted by the fluid on
the particle in terms of the ”inner friction” coefficient of the fluid itself, the fluid viscosity η. Viscosity describes
friction between two nearby layers of the fluid moving at different speeds. Inner forces in a fluid tend to equilibrate
the velocities of the layers, which results in a friction force described by η. The Stokes law expresses the friction force
on the particle in terms of η as s

Fav(v) = −6πaηv. (52)

As a result, Eq. (50) becomes

dv

dt
= −v

τ
, τ =

M

6πaη
. (53)

Let us stress that the above equation is the same whatever the initial microscopic state of the fluid was. Also if we
put many Brownian particles at different positions and with different velocities, still, after a short transient in time,
they all would satisfy the same equation (53). The time averaging wiped out all the details of the state of the fluid
besides its viscosity. Let us note that though the linear friction law is very natural it is not trivial. For example, it
would not hold in the two dimensional situation (”Brownian motion of a cylinder”).
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The above analysis provides a correct description of the velocity dynamics when the velocity is not too small.
Nevertheless, there is an obvious problem with Eq. (53): at large times the particle velocity relaxes to v = 0 and
hence, in the end, no Brownian motion would occur! Moreover, v = 0 would contradict thermodynamics which
says that the final state of the system must be thermal equilibrium with the Maxwellian distribution of the particle
velocity having the temperature of the fluid. Thus the lowest order approximation in the small parameter τrel/τ is
not sufficient to describe the Brownian motion. The reason is that the leading order term in the expansion, 〈F 〉(v),
vanishes exactly at v = 0 where even small corrections to Eq. (53) become important. Thus we need to consider the
corrections to the above equation

dv

dt
= −v

τ
+

f(t)
M

, (54)

where f(t) describes the fluctuating component of the force providing corrections to the systematic component of the
force given by friction.

D. The fluctuating component of the force

The properties of the fluctuating component of the force can be seen most clearly by considering the situation where
due to external forces the Brownian particle is fixed at some position in the fluid. We now measure the force f(t)
exerted by the fluid on the particle in much the same way as we would measure the force on the boundaries of the
gas or liquid (here the surface of the Brownian particle is really a part of the gas boundary). We understand that on
average the force is zero: all the bumps on one side of the particle will be eventually balanced by the bumps on the
opposite side. So f(t) will have zero time average

〈f(t)〉 ≡ lim
T0→∞

∫ t+T0

t

dt′

T0
f(t′) = 0. (55)

Nevertheless, generally, f(t) deviates from its average at any given t. We say that it fluctuates near the average. If the
particle would experience only the fluctuating component of the force f , so that dv/dt = f/M , then the fluctuations
of f near zero would have a non-trivial, important effect on v, considered in detail in the next subsection. Thus we
need to characterize f quantitatively. The most important characteristics of fluctuations is the correlation function,
expressing the degree of correlation between the values of f at different times

〈fi(0)fj(t)〉 ≡ lim
T0→∞

1
T0

∫ t0+T0

t0

fi(t′)fj(t′ + t)dt′. (56)

Above we noted the independence of the average on t0: the fluid is in equilibrium state which is time shift invariant
on average. A main assumption of the theory of Brownian motion is that f has a finite correlation time τcor. This
means that 〈fi(0)fj(t)〉 is small at t À τcor so that roughly the values of the force f(t1) and f(t2) are independent
whenever |t2 − t1| À τcor. The decay of correlations is assumed sufficiently fast so that the integral

∫∞
0
〈fi(0)fj(t)〉dt

converges and
∫ T

0
〈fi(0)fj(t)〉dt ≈ ∫∞

0
〈fi(0)fj(t)〉dt for any T À τcor. The assumption of the finite correlation time

of the force is very close to the assumption of the finite time of relaxation to the equilibrium and in fact we shall
see via the fluctuation-dissipation theorem that there is a direct connection between the two assumptions. As in the
case of the relaxation time, the finite correlation time can be argued for in ergodic systems and it is expected to hold
normally.

The meaning of the assumption of finite relaxation time can be seen clearly in gases where the force exerted by the
fluid on the surface of the fixed Brownian particle is a result of the sum of many collisions of individual gas particles
against the surface. It is natural to expect that subsequent collisions of particles are independent of each other -
dealing with about 1023 gas particles it is reasonable that every new gas particle coming to collide with the Brownian
particle is not sensitive to the individual collisions of other particles that happened before. The latter assumption
results in finiteness of the correlation time of f . In fact, the assumption of independence of subsequent collisions is
very similar to the Boltzmann ”molecular chaos assumption”, that we shall encounter in the derivation of Boltzmann
equation, and it is a subtle assumption.

Below we shall assume that time averages of expressions involving the fluctuating force f(t), or the averages over
the initial state of the fluid, can all be substituted by ensemble averages. The ensemble average signifies that f(t) is
considered as a random vector function with a given statistics. In this sense f(t) is a random or stochastic process.
The resulting dynamical equations with f on the RHS are called stochastic equations.
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Let us briefly discuss stochastic processes. A stochastic process ξ(t) is a collection of random variables labeled by
a continuous index t. As any collection of random variables, ξ(t) is characterized by the joint probability distribution
function which here gives a probability weight to any given shape of ξ(t). Thus the probability density of ξ(t) is
the probability density functional rather than function - it takes as an argument a function and assigns to it a
number, the probability weight. Important characteristics of a random process are correlation functions which are
moments of different orders: the average 〈ξ(t)〉, the pair correlation function 〈ξ(t1)ξ(t2)〉 or dispersion 〈〈ξ(t1)ξ(t2)〉〉 ≡
〈ξ(t1)ξ(t2)〉〉 − 〈ξ(t1)〉〈ξ(t2)〉, the triple correlation function 〈ξ(t1)ξ(t2)ξ(t3)〉 and so on. For the so-called stationary
processes time shift invariance holds on average and the statistics of ξ(t) and ξ(t+t0) are the same for any constant t0.
The correlation functions in this case depend only on differences of the time arguments. Finite correlation time τcor

signifies that the values of the random process ξ(t1) and ξ(t2) are roughly independent at |t2−t1| À τcor. For example,
the dispersion decays rapidly at |t2 − t1| À τcor and

∫
dt2〈〈ξ(t1)ξ(t2)〉〉 converges. The far reaching consequences of

the assumption of finite correlation time are illustrated in the next subsection, where the connection with diffusion is
demonstrated.

E. Motion driven by a random stationary process with a finite correlation time. Large time diffusive
behavior

Let us consider an equation of the form

ẋ = ξ(t), (57)

where ξ(t) is a random stationary process (sometimes called noise) with a finite correlation time τcor. For simplicity
we consider one-dimensional case - the generalization to higher dimensions is straightforward. Since average 〈ξ〉 could
be eliminated by passing to the random variable x(t)− t〈ξ〉, we assume with no loss that 〈ξ〉 = 0. We designate the
pair-correlation function by H so that 〈ξ(t1)ξ(t2)〉 = H(t2 − t1). The solution of Eq. (57) with x(0) = x0 is

x(t)− x0 =
∫ t

0

ξ(t′)dt′, (58)

which gives

[x(t)− x0]
2 =

∫ t

0

dt1dt2ξ(t1)ξ(t2) = 2
∫ t

0

dt1

∫ t1

0

dt2ξ(t1)ξ(t2), (59)

where we used that the integrand is symmetric. Taking the time derivative of the above equation and averaging over
the statistics of ξ we obtain

d

dt
〈[x(t)− x0]

2〉 = 2
〈∫ t

0

dsξ(t)ξ(t− s)
〉

= 2
∫ t

0

dsH(s). (60)

Above we noted that the pair correlation function of a stationary process is an even function of the time difference
[using time shift invariance on average one has H(−t) ≡ 〈ξ(0)ξ(−t)〉 = 〈ξ(t)ξ(0)〉]. At t À τcor, the RHS of Eq. (60)
saturates at a time-independent value producing

d

dt
〈[x(t)− x0]

2〉 ≈ 2
∫ ∞

0

H(t′)dt′, 〈[x(t)− x0]
2 ≈ 2t

∫ ∞

0

H(t′)dt′, t À τcor. (61)

We observe that even though x(t) is driven by a stationary process, by itself it is not stationary - rather its amplitude
grows proportionally to

√
t on average. It should be stressed that 〈x(t)〉 is zero always, it is only the amplitude of the

fluctuations that grows with time. Clearly, the amplitude growth is a result of the accumulation of effects of small
fluctuations of ξ over.

The behavior described by Eq. (61) is a signature of diffusion. Consider the concentration of a tagged particle
P (x, t) that obeys the diffusion equation

∂P

∂t
= D

∂2P

∂x2
, P (x, x0, 0) = δ(x− x0), (62)

where D is the diffusion coefficient and P (x, x0, 0) describes that the particle is initially at x0. The mean squared
displacement 〈[x(t)− x0]

2〉 ≡ ∫
[x− x0]

2
P (x, x0, t)dx obeys

∂

∂t

∫
[x− x0]

2
P (x, x0, t) = D

∫
[x− x0]

2 ∂2P (x, x0, t)
∂x2

dx = 2D, (63)
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where we integrated by parts twice and used that the diffusion equation conserves the total mass
∫

P (x, x0, t) =∫
P (x, x0, 0) = 1. Integrating the above relation over time, we obtain the famous Einstein formula for one-dimensional

diffusion that states that 〈[x(t)− x0]
2 = 2Dt. Comparing Eq. (63) with Eq. (61), we find that the latter corresponds

to diffusion with the diffusion coefficient

D =
∫ ∞

0

H(t)dt =
1
2

∫ ∞

−∞
H(t)dt. (64)

The connection of Eq. (57) with the diffusion equation (62) is in fact stronger. We note that at t À τcor the RHS of
Eq. (58) is roughly a sum of a large number t/τcor independent random variables. Indeed, if we choose ∆t according
to τcor ¿ ∆t ¿ t, assuming with no loss that N = t/∆t À 1 is an integer, then the summands in

∫ t

0

ξ(t′)dt′ =
N−1∑

k=0

∫ (k+1)∆t

k∆t

ξ(t′)dt′, (65)

can easily be seen approximately independent due to τcor ¿ ∆t. As a result, the probability distribution function of
x(t) − x0 is approximately Gaussian. Since a Gaussian distribution is determined uniquely by the average and the
dispersion, then using 〈x(t)〉 = x0 and the results for 〈[x(t)− x0]

2〉, one finds the following Gaussian distribution for
the probability distribution function (below PDF) of x(t):

P (x, x0, t) ≡ 〈δ [x(t)− x]〉x(0)=x0 =
〈

δ

[
x0 +

∫ t

0

ξ(t′)dt′ − x

]〉
≈ 1√

4πDt
exp

[
− (x− x0)2

4Dt

]
, t À τcor, (66)

where the subscript stands for conditional averaging. We used the same notation for the PDF of x(t) and the
concentration in Eq. (62) on purpose - the above expression of is really the solution to Eq. (62), the so-called Green
function of the heat equation. This is the first instance we encounter of an important connection between random
dynamics and solutions to partial differential equations ”of heat type”.

If we lifted the assumption of zero average of ξ, then Eq. (66) would be changed to

P (x, x0, t) ≈ 1√
4πDt

exp
[
− (x− x0 − 〈ξ〉t)2

4Dt

]
, t À τcor, (67)

where 2D =
∫ 〈〈ξ(0)ξ(t)〉〉dt. We observe that at times much larger than the correlation time of the noise, all the fine

details of the statistics of ξ(t) in Eq. (57) are washed out - the statistics of x(t) is determined only by 〈ξ〉 and the
time integral of the dispersion 〈〈ξ(0)ξ(t)〉〉 (sometimes called the power of the noise). This allows to substitute the
dynamics (57) by the effective Langevin dynamics

dx

dt
= ξ′, (68)

where ξ′ is a Gaussian noise determined uniquely by the average 〈ξ′〉 = 〈ξ〉 and the dispersion

〈〈ξ′(t1)ξ′(t2)〉〉 = 2Dδ(t2 − t1), D =
1
2

∫ ∞

−∞
〈〈ξ(0)ξ(t)〉〉dt. (69)

At t À τcor the dynamics (68) leads to the same PDF of x(t) as the original dynamics (57). Formally, the noise
ξ′ is obtained from ξ by taking the limit τcor → 0 at the constant power of the noise - note that

∫ 〈〈ξ(0)ξ(t)〉〉dt =∫ 〈〈ξ′(0)ξ′(t)〉〉dt. A Gaussian noise which pair correlation function is a δ−function, like the one in Eq. (69), is called
a white noise (white because all frequencies are present in the noise spectrum, see subsection (IV I).

The generalization of the above analysis to vector case is straightforward. The vector x evolving in time according
to

dxi

dt
= ξi(t), (70)

will perform at large times diffusion with the diffusion coefficient

D =
1
6

lim
t→∞

3∑

i=1

〈[xi(t)− xi(0)]2

t
=

1
6

∫ ∞

−∞
〈ξ(0) · ξ(t)〉dt, (71)
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corresponding to the three-dimensional diffusion equation

∂P

∂t
= D∇2P. (72)

We conclude that if Brownian particle would experience only the fluctuating component of the force f , then the
typical value of its velocity would grow with time indefinitely. We now pass to consider the full dynamics of the
Brownian motion.

F. The equation of motion of the Brownian particle, part II. Fluctuation-dissipation theorem

We are now ready to write down the complete effective dynamics of a Brownian particle. This is obtained by
combining the large and small velocity asymptotic expression for the force in Eq. (49). We saw that at large velocities
a linear friction term should describe the dynamics. On the other hand, at small velocities the friction is small and
the fluctuating, zero-average component of the force becomes dominant. The overall dynamics takes into account the
two components of the force and we have

dv

dt
= −v

τ
+

f

M
, (73)

where f is a random force with zero average and a finite correlation time τcor ¿ τ . The above equation can be
seen as an effective form of Eq. (50) where the fluctuating term describes deviations of the finite time average on
the RHS of Eq. (50) from its infinite time value Fav(v). Equation (73) is called Langevin equation [sometimes the
term is reserved only for the case where f has δ−function correlations in time like in Eq. (69)]. It substitutes the
original random force F by another random force f which at first sight does not bring much. In fact, however, the
decomposition in Eq. (73) along with the inequality τcor ¿ τ allows to solve the problem easily. It should be stressed
that the statistics of f in Eq. (73) is independent of v - this is just the equilibrium statistics obtained in the auxiliary
problem of fixed Brownian particle with v = 0. One could say that the statistics of the fluctuating component of the
force F has a regular limit at v → 0 which is sufficient for Eq. (73), valid only at not too large v. Moreover, the
statistics of f is independent of the particle mass M - it depends solely on the particle size as one can be see from
the previous discussion. The latter independence is essential because it guarantees that at a given particle size, the
limit of large M necessarily leads to the separation of time-scales, τ À τcor. Indeed, while τcor is M−independent, τ
grows with M indefinitely, see Eq. (53).

The two terms in Eq. (73) have opposite effects on the velocity. The friction tends to stop the particle and it
dissipates any deviations of the particle velocity from zero. On the other hand, the fluctuating component of the
force, via the accumulation of the effects of fluctuations with time, tends to increase the typical value of v indefinitely.
Thus one expects a balance of the two forces at some intermediate value of velocity. This value of velocity is nothing
but the thermal velocity

√
kT/M . Below the thermal velocity, at v ¿

√
kT/M , the friction in Eq. (73) is negligible,

while at v À
√

kT/M the fluctuating component of the force can be discarded and one can deal with the simple
equation (53). Let us pass to the quantitative consideration. The solution of Eq. (73) reads

v(t) = v(0)e−t/τ +
1
M

∫ t

0

e−(t−t′)/τf(t′)dt′. (74)

We observe that the first term in the above expression decays with time and it becomes small exponentially at t À τ .
In particular, the initial value of velocity is forgotten within a characteristic time τ - at t À τ the information on the
initial velocity is essentially lost. This irreversibility is a natural effect of friction - if we set a particle in motion in a
fluid then, due to the friction, the particle will eventually stop and the system will look the same whatever the initial
velocity was. Thus at large times the first term in the RHS of Eq. (79) can be discarded and we obtain

v(t) =
1
M

∫ t

0

e−(t−t′)/τf(t′)dt′ ≈ 1
M

∫ t

−∞
e−(t−t′)/τf(t′)dt′, t À τ, (75)

where we extended the lower limit of integration to −∞ using the exponential decay factor. The above equation
defines a stationary random process v(t) thus showing that v(t) relaxes to a steady state within relaxation time τ .
One can see that v(t) is a Gaussian random process. Indeed, since exp[−(t − t′)/τ ] changes at a time-scale τ , then
we may write

∫ t

−∞
e−(t−t′)/τf(t′)dt′ ≈

∫ t

−∞
e−(t−t′)/τ 〈f(t′)〉∆tdt′, (76)
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where 〈f(t′)〉∆t is f(t′) averaged over a time interval ∆t with τcor ¿ ∆t ¿ τ . We observe that 〈f(t′)〉∆t is a sum of
a large number of independent random variables due to τcor ¿ ∆t. Since linear operations over Gaussian variables
preserve Gaussianity, then we conclude that v(t) is Gaussian. The Gaussianity of v(t) could be anticipated based on
our discussion of the behavior of a Brownian particle in a gas: appreciable changes in the particle velocity result only
from summing the impacts of many collisions of the particle with the molecules of the gas. If the latter collisions
are independent then the velocity is given by the sum of a large number of independent random variables and hence
it must be Gaussian. It follows that the single time distribution of v(t) is determined uniquely by 〈v〉 = 0 and the
correlation matrix 〈vi(t)vj(t)〉 given by

〈vivj〉 =
2

M2

∫ t

−∞
dt2

∫ t2

−∞
dt1e

−(2t−t1−t2)/τCij(t2 − t1), (77)

where we introduced Cij(t) ≡ 〈fi(0)fj(t)〉 and used that the integrand is a symmetric function of t1 and t2. The
function Cij(t2−t1) confines the difference t2−t1 to t2−t1 . τcor ¿ τ so that exp[−(2t−t1−t2)/τ ] ≈ exp[−2(t−t2)/τ ].
Introducing s = t2 − t1 we have

〈vivj〉 =
2

M2

∫ t

−∞
dt2e

−2(t−t2)/τ

∫ ∞

0

Cij(s)ds =
τ

M2

∫ ∞

0

〈fi(0)fj(t)〉dt. (78)

On the other hand, we know from thermodynamics what the limiting distribution of v must be Maxwellian, that is
v is Gaussian indeed with zero average and

〈vivj〉 =
δijkT

M
. (79)

Comparing Eqs. (81) and (79), we conclude that the fluctuating component of the force correlation function must
obey

τ

M

∫ ∞

0

〈fi(0)fj(t)〉dt = δijkT. (80)

Taking the trace of the above equation we find that the macroscopic friction coefficient obeys

1
τ

=
1

6MkT

∫ ∞

−∞
〈f(0) · f(t)〉dt. (81)

Finally, using Eq. (53) we may also write

η =
1

36πakT

∫ ∞

−∞
〈f(0) · f(t)〉dt. (82)

Note that the mass cancelled in the last expression as it should: η is a property of the fluid and not the particle and
thus it must not depend neither on M , nor on a. In particular, we conclude that the force correlation function must
be such that the above expression is a−independent. The above relation is not the most convenient expression for η
in terms of the equilibrium fluctuations of the system, though it is conceptually the simplest one. Other expression
for η will be considered later.

Equations (81)-(82) constitute a very important result, the so-called fluctuation-dissipation theorem (below the
FDT). The content of the fluctuation-dissipation theorem is a relation between two properties of the system: dissipa-
tion coefficient and system fluctuations in the equilibrium. The dissipation coefficient describes system relaxation to
equilibrium. An example of a dissipation coefficient is the friction coefficient 1/τ in Eq. (53). If we introduce a particle
in the fluid with a finite velocity then, after a while, this velocity disappears due to friction and kinetic energy of
the particle dissipates into heat. Fluctuation-dissipation theorem tells us that fluctuations and dissipation in macro-
scopic systems are essentially equivalent. One direction is clear: if there are fluctuations of the macroscopic variables
from their equilibrium values then there must be a related dissipation that would enforce the return to equilibrium.
Another direction is less obvious: if after a deviation a macroscopic variable returns to its specific equilibrium value
why should this imply that there are fluctuations in the equilibrium? To see the implication, note that absence of
fluctuations signifies infinite memory. On the other hand, dissipation signifies absence of memory or finite correlation
time (we have seen already that finite correlation time is a crucial assumption for our consideration of the Brownian
motion).

The theorem shows that the kinetic coefficients of friction and viscosity, that characterize the system relaxation to
equilibrium and thus a non-equilibrium dynamics, are determined by the equilibrium properties of the system. The
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latter include both the amplitude A of the equilibrium fluctuations of f and their correlation time τcor: the integral
in Eq. (81) can be estimated as A2τcor. For example, the larger A is, the larger momentum is transferred to the
Brownian particle in each elementary interaction with the fluid, and hence the faster deviations of v from zero are
damped or the smaller τ is. Note that for the FDT to be meaningful it is necessary that equilibrium fluctuations
have finite correlation time, so that there is forgetting of initial fluctuations. Such forgetting intuitively reflects the
same property of the system as the dissipation coefficient and the FDT formalizes this intuition. We shall say more
on this below in the discussion of the Onsager principle. Finally, note that in the end, both τ and f arise from the
decomposition of the same molecular force F and thus a connection between them is natural.

G. The connection between diffusion and finite correlation time of particle velocity. Einstein-Stokes
relation.

We saw above that the stochastic dynamics of the form ẋ = ξ(t), where ξ(t) is a random process with a finite
correlation time τcor leads to the diffusive behavior of x(t) at t À τcor. Applying this result in the most straightforward
way, we conclude that if a particle velocity in the relation

dx

dt
= v(t), (83)

has a finite correlation time, then, at large times, the particle performs diffusion in the real space. It should be stressed
that the result applies in many different situations. For example it is applicable to the situation when the particle
moves in a fluid which motion is turbulent - in that case v(t) should also be considered as a random process with
a finite correlation time. The difference between different situations will be only in the actual value of the diffusion
coefficient D which is given by

D =
1
3

∫ ∞

0

〈v(t) · v(0)〉dt, (84)

see Eq. (71) [we assumed 〈v〉 = 0]. To apply the result to the Brownian motion we need to verify that v(t) has a
finite correlation time τcor and find 〈v(t) · v(0)〉. We already saw in the previous subsection that initial fluctuations
of velocity decay within a characteristic time τ so that τcor ∼ τ so let us consider 〈vi(t)vj(0)〉. Using Eq. (73) one
finds that the correlation function 〈vi(t)vj(0)〉 obeys

d

dt
〈vi(t)vj(0)〉 = −〈vi(t)vj(0)〉

τ
+
〈fi(t)vj(0)〉

M
. (85)

We note that due to causality v(0) is determined by f at negative times. Since f(t) is independent of f at negative
times for t À τcor, one concludes that f(t) and v(0) are independent random variables at t À τcor. It follows that
the average of the product is the product of averages or

〈fi(t)vj(0)〉 ≈ 〈fi(t)〉〈vj(0)〉 = 0, t À τcor. (86)

We conclude that

d

dt
〈vi(t)vj(0)〉 ≈ −〈vi(t)vj(0)〉

τ
, t À τcor. (87)

Next we note from the integral representation (79) of v(t) that the characteristic time of variations of v(t) is τ , so
that at t ¿ τ one has v(t) ≈ v(0) and thus 〈vi(t)vj(0)〉 ≈ 〈vi(0)vj(0)〉. As a result we can neglect times of order
τcor ¿ τ in the evolution of 〈vi(t)vj(0)〉 and use

d

dt
〈vi(t)vj(0)〉 ≈ −〈vi(t)vj(0)〉

τ
, (88)

at any t > 0. The above equation on the correlation function is an expression of the Onsager principle, see below. We
have

〈vi(t)vj(0)〉 = e−t/τ 〈vi(0)vj(0)〉 =
δijkT exp[−t/τ ]

M
. (89)
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Note that the friction coefficient determines the decay of the pair correlation function in time. Using Eq. (87) and
integrating 〈vi(t)vj(0)〉 over time, we obtain the Einstein relation for the diffusion coefficient:

D =
kTτ

M
. (90)

The use of the expression (53) for τ produces the Einstein-Stokes relation that connects the coefficient of particle
diffusion in a fluid and the fluid viscosity

D =
kT

6πηa
. (91)

The above relation is useful for estimating the diffusion coefficient in a fluid with known viscosity, for example water.
Note that, interestingly, D is independent of the particle mass: a particle with a different mass but the same size
would have the same diffusion coefficient.

H. Effective white noise description

We saw in subsection IV E that as far as the statistics at large times is concerned one can substitute the original
noise by the white noise with the same integral of dispersion. The same thing can be done in the calculations above.
Without changing any of the answers one could substitute the original force in the Langevin equation (73) by any
other force f̃ having correlation time much smaller than τ , and obeying 〈f̃〉 = 0 and

∫
〈f̃i(t)f̃j(0)〉dt =

∫
〈fi(t)fj(0)〉dt =

2δijMkT

τ
, (92)

where we used Eq. (80). In other words, different types of microscopic (fluid) dynamics may lead to the same
macroscopic dynamics (dynamics of the Brownian particle), cf. our treatment of perturbed harmonic oscillator.
To see the equivalence note that both processes lead to Gaussian distribution of the process v(t). As such v(t) is
completely determined by its average (equal to zero) and pair correlation function 〈vi(0)vj(t)〉. Since these are also
the same for the two processes, the equivalence follows.

A particularly convenient choice of f̃ is a Gaussian random force with 〈f̃〉 = 0 and

〈f̃i(t)f̃j(t′)〉 = 2δijδ(t− t′)
MkT

τ
. (93)

The above noise with zero time correlation is often referred to as ”white noise”. The reason for the name will become
clear when we discuss the spectral decomposition of fluctuations. The equivalence of the original f to f̃ above is
really an approximation: the white noise approximation, corresponding to taking the limit of zero τcor/τ just gives the
leading order answers in τcor/τ . For ”real” force f there are corrections both to Gaussianity of v and to 〈vi(0)vj(t)〉,
which are small in the parameter τcor/τ ¿ 1.

Thus for the analysis of the Brownian motion we may use the effective dynamics

dv

dt
= −v

τ
+

f̃

M
(94)

Often it is the above dynamics with the white noise forcing that is called Langevin equation. From now on we will
mostly use the effective white noise description in Langevin equations and we will omit tildas with no ambiguity. Let
us now show an alternative way to obtain the effective description of the Brownian motion provided by Eqs. (93)-(94).

I. The Onsager regression to equilibrium hypothesis and the Langevin equation

The Brownian particle equation of motion written in the form

dv

dt
= −v

τ
+

f

M
, (95)

is but another form of the original Newton equation of motion Mv̇i = Fi. However, introducing the assumption that
the force f has correlation time much smaller than τ we were able to construct a rather detailed description of the
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motion, reducible to Eqs. (93)-(94). In this subsection we will use another assumption on Eq. (95) that will lead us
to the same Eqs. (93)-(94).

We will employ the Onsager regression to equilibrium hypothesis, which is not really a hypothesis as it seems to be
true always. The hypothesis states that small fluctuations decay on average in exactly the same way as macroscopic
deviations from equilibrium. To use the hypothesis we first need to understand what macroscopic deviations from
equilibrium mean. For Brownian motion a macroscopic deviation from equilibrium is the situation where the value
of the particle velocity is well above the typical value due to fluctuations, that is the thermal velocity

√
kT/M . For

such values the dynamics of velocity is provided simply by non-random dynamics

dv

dt
= −v

τ
. (96)

Indeed, as we discussed in our derivation of Eq. (53), the equation above holds at large velocities. Formally, this can
be seen by considering the equation on 〈v〉 obtained by averaging Eq. (73):

d

dt
〈v〉 = −〈v〉

τ
. (97)

The equation above reduces to Eq. (96) if initial velocity is much larger than
√

kT/M (you are invited to show this in
the homework). The above equation says that the fluctuating component of the force does not influence the decay of
the average 〈v〉 to its equilibrium value 〈v〉 = 0. This follows from the analysis made before when we mentioned that
the non-random dynamics (53) is valid for large velocities. The reason is that fluctuating corrections have a certain
fixed amplitude and they are negligible for velocities well above that amplitude. Qualitatively, this is natural - the
velocity decay of particles in the fluid does looks deterministic corresponding to ordinary example of friction. Next, to
express the Onsager hypothesis quantitatively we need to make a digression on the definition of correlation functions
in equilibrium.

J. Digression: correlation functions in equilibrium

Let us consider two dynamical variables: functions F1(t) = F1[p(t), q(t)] and F2(t) = F2[p(t), q(t)] of the phase
space variables of the system. We assume that the system is in equilibrium, say in the canonical ensemble with the
temperature of reservoir T , and it is characterized by the corresponding equilibrium distribution Peq(p, q) in the phase
space. Now, even if Fi(t) are macroscopic with their time averages given by the appropriate ensemble averages 〈Fi〉,
still their value is not precisely a constant, rather it varies in time being only on average equal to the 〈Fi〉. We say
that the variables Fi fluctuate near the average. For example, if E(t) is the energy of a macroscopic subsystem with
volume Vsub of a large closed system with energy E and volume V À Vsub, then on average E(t) = EVsub/V , while
at any given time E(t) 6= EVsub/V generally.

Below without any loss we will assume 〈Fi〉 = 0 which can always by achieved by passing to F̃i(t) = Fi[p(t), q(t)]−
〈Fi〉. Now for each system in the ensemble one has a particular time history of Fi(t) and knowing the history of say
F1(t) changes the probability of observing a particular time history of F2(t). A simple measure of correlations in
fluctuations of Fi is the correlation function

〈F1(t)F2(0)〉 ≡
∫

dp0dq0Peq(p0, q0)F1[p(t|p0, q0), q(t|p0, q0)]F2[p0, q0], (98)

where p(t|p0, q0), q(t|p0, q0) are the functions that give the time t momenta and coordinates of the particles given
that at t = 0 they are given by p0 and q0 respectively. These functions, at least in principle, can be determined by
solving the Hamilton equations of motion of the system

∂p(t|p0, q0)
∂t

= −∂H

∂q
,

∂q(t|p0, q0)
∂t

=
∂H

∂p
, p(0|p0, q0) = p0, q(0|p0, q0) = q0. (99)

Operationally, what the above definition of the correlation function does is as follows. At t = 0 each system in the
ensemble has a definite value of momenta p0 and coordinates q0. These determine completely the momenta and
coordinates at later times. In particular, for each system in the ensemble the initial values p0 and q0 determine
F2(0) = F2[p0, q0] and F1(t) = F1[p(t|p0, q0), q(t|p0, q0)]. Taking now the product of the last two and averaging over
different p0, q0 with their appropriate probability weights produces the correlation function 〈F1(t)F2(0)〉. Clearly,
〈F1(t)F2(0)〉 is a measure of correlations in temporal fluctuations of Fi(t). Because equilibrium is a statistically
stationary state the choice of the initial moment of time is not essential, 〈F1(t)F2(0)〉 = 〈F1(t + t0)F2(t0)〉 for any t0.
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The latter equality can be seen directly by using p(t|p0, q0) = p(t + t0|t0, p0, q0) and q(t|p0, q0) = q(t + t0|t0, p0, q0)
with the appropriate definitions of p(t + t0|t0,p0, q0) and q(t + t0|t0,p0, q0)

Let us now apply the definition above to the Brownian motion problem. The equilibrium system in this case is
the composite system ”fluid plus particle”. The dynamical variables of this system are the fluid particles momenta
and coordinates, p and q respectively, and the velocity v (equivalent to momentum) and position x of the Brownian
particle. The equilibrium distribution function obeys the decomposition

Peq(p, q, v, x) = PM (v)P̃ (p, q, x), (100)

where PM (v) is the Maxwell distribution at the system temperature T . Let us now consider the correlation function
〈vi(t)vj(0)〉 that describes the correlations in the fluctuations of the Brownian particle velocity. These fluctuations
can be easily illustrated for a gas: though on average v = 0, still the bumps exerted on the particle by the gas
particles are almost always not in the precise balance and particle velocity gets increased in some directions, then
decreased back and so further. Now applying the general definition of the correlation function (98) to two functions
F1[p(t), q(t), v(t), x(t)] ≡ vi(t) and F2[p(t), q(t), v(t),x(t)] ≡ vj(t) we get

〈vi(t)vj(0)〉 =
∫

dp0dq0dv0dx0PM (v0)P̃ (p0, q0, x0)vi(t|p0, q0, v0, x0)v0j =
∫

dv0PM (v0)Hi(t|v0)v0j , (101)

where we used Eq. (100) and defined the conditional average

Hi(t|v0) ≡
∫

dp0dq0dx0P̃ (p0, q0, x0)vi(t|p0, q0, v0,x0). (102)

We are now ready to formulate the Onsager hypothesis.

K. The Onsager hypothesis

From the fact that Brownian particle obeys at large velocities the simple friction equation (96) it follows that

dHi(t|v0)
dt

= −Hi(t|v0)
τ

, (103)

at sufficiently large v0 and not too large t. Now, equation (96) describes the system (fluid plus particle) relaxation
to equilibrium after the creation of an initial macroscopic deviation in the particle velocity. On the other hand, the
initial fluctuation of velocity could arise just ”by itself” because the system fluctuates even if in equilibrium. The
fluctuation does not mean 〈v(t = 0)〉 6= 0, it only means that v(t = 0) is generally non-zero for most of the systems
in the ensemble. Still if say initially vx(t = 0) is positive one expects that this positive value would be forgotten in
time, it would decay in some sense just like 〈v〉. The Onsager hypothesis quantifies this expectation. The hypothesis
extends Eq. (103) to arbitrary v0 and t. This extension is rather natural because Hi(t|v0) is quantity which is already
averaged over the states of the fluid and thus the equation on Hi(t|v0) in contrast to the equation on v should not
involve any corrections due to fluctuations.

By Eq. (101) Eq. (103) implies that the correlation function 〈vi(t)vj(0)〉 satisfies an equation of exactly the same
form as Eq. (97), namely:

d

dt
〈vi(t)vj(0)〉 = −〈vi(t)vj(0)〉

τ
. (104)

While the above equation could be derived from the Langevin equation (73), here it does not involve an explicit
consideration of the decomposition of the forces employed in (73). One can say that the Onsager hypothesis postulates
Eq. (104) instead of postulating that the force in the Langevin equation has correlation time much smaller than τ
which is the assumption we used before. Obviously, Eq. (104) implies

〈vi(t)vj(0)〉 = e−|t|/τ 〈vi(0)vj(0)〉 = e−|t|/τδij
kT

M
. (105)

where we used the equipartition theorem. Now, in contrast to our derivation of the above result from the Langevin
equation, here the above equation becomes the starting point of the analysis of Brownian motion. If one starts with
the above equation and introduces the force f by Eq. (95) then it holds that f has the same statistics as the white
noise f̃ introduced before. This can be verified directly with the help of Eq. (75) or by another method that we pass
to consider.
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L. Spectral decomposition of fluctuations

Definition of the spectral decomposition and the spectrum.... The noise is called ”white” because it contains all
frequencies just like white color contains all colors...

M. Relaxation to equilibrium and Newton’s law of cooling

As an introduction to the theory of thermodynamic fluctuations considered in the next Section, let us consider the
evolution of 〈v2(t)〉. We have

d

dt
〈v2(t)〉 = 2〈v · dv

dt
〉 = −2〈v2〉

τ
+

2〈v(t) · f(t)〉
M

, (106)

where we used Langevin equation (73). To find the average appearing in the last term above we use the explicit
expression (79) for v(t). We find

〈v(t) · f(t)〉 = 〈v(0) · f(t)〉e−t/τ +
1
M

∫ t

0

e−(t−t′)/τ 〈f(t′) · f(t)〉dt′. (107)

The average 〈v(0) · f(t)〉 already occurred in our treatment of 〈vi(t)vj(0) where it was shown small at t À τcor. On
the other hand for the last term above, using that the correlation function in the integrand decays fast at t− t′ À τcor,
where τcor ¿ τ , we obtain

1
M

∫ t

0

e−(t−t′)/τ 〈f(t′) · f(t)〉dt′ ≈ 1
M

∫ t

−∞
〈f(t′) · f(t)〉dt′ =

3kT

τ
, (108)

where we used the FDT in the form of Eq. (81). It follows that we may rewrite Eq. (107) as

d

dt
〈v2(t)〉 = −2

[〈v2〉 − 3kT/M
]

τ
. (109)

The above equation describes exponential relaxation of 〈v2(t)〉 to its equilibrium value 3kT/M given by the equipar-
tition theorem. It can be given a suggestive form if we formally introduce the temperature of the Brownian particle
T (t) by reverting the equipartition theorem (cf. our definition of temperature for an ergodic system given by Eq. (31)

T (t) ≡ M〈v2(t)〉
3k

. (110)

Then, designating for the purposes of this subsection the fluid temperature by Te, with subscript standing for ”envi-
ronment”, we find that T (t) obeys

dT

dt
= −T − Te

τrel
, τrel ≡ τ

2
. (111)

It follows that the evolution of 〈v2(t)〉 can be seen as a relaxation of the ”temperature” of Brownian particle to the
temperature of the environment Te (here the environment is nothing but the ambient fluid).

The above law, though it was obtained in a particular case and somewhat artificially, is in fact a general law that
was discovered by Newton. Newton’s Law of Cooling states that the rate of change of the temperature of an object
is proportional to the difference between its own temperature and the ambient temperature (i.e. the temperature of
its surroundings).

In particular the law applies to the following situation. Consider a subsystem of a large system at equilibrium at
some temperature. Assume that the subsystem, though it is much smaller than the whole system, is sufficiently large
so that we can speak of its temperature. Now if for some reason the temperature of the subsystem Tsub deviates from
the temperature of the whole system Te, then a relaxation process starts, and it also obeys the Newton law

dTsub

dt
= −Tsub − Te

τrel
, (112)

with some τrel. Again one can neglect here the minute variations of the temperature of the whole system and consider
it constant throughout the process. Now a possible source of the deviation of Tsub from Te is just natural fluctuations
in the system: all thermodynamic variables (and Tsub is a one) fluctuate in equilibrium and only on average they are
equal to their values provided by thermodynamics. This brings us to our next subject - the theory of thermodynamics
fluctuations that will be discussed after the following exercise using the theory of Brownian motion.
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N. An exercise: dumbbell model of a polymer

Consider a simple dumbbell model of a polymer that consists of two identical spherical particles with radius a
connected by a spring with spring constant k. The dumbbell is immersed in a fluid. One can assume that random
components of the force acting on each spherical particle are independent and given by a white noise. In all parts of
the problem one can neglect the hard spheres interaction of the particles. The fluid temperature T and mass M are
known.

A. Use the equipartition theorem to obtain the equilibrium average value of the relative coordinate between the
particles.

B. Write down the Langevin equations of motion on the center of mass and the relative coordinates of the particles.
Which one of them performs diffusion and which does not? What is the diffusion coefficient and how is it related to
the diffusion coefficient of the single sphere? Using the expression for relaxation time provided in class determine if
the diffusion coefficient depends on the mass of the particles.

C. Derive the spectrum of fluctuations of the relative coordinate and determine the corresponding correlation
function as a function of time. Is the result of A reproduced?

D. Derive the correlation function of the relative velocity. Can you see from this expression that relative coordinate
does not perform diffusion at large times?

E. What is the equilibrium distribution function of the coordinates and velocities?
Solution.
A. The Hamiltonian of the system is

H =
p2
1

2M
+

p2
2

2M
+

k(x2 − x1)2

2
. (113)

By the equipartition theorem each degree of freedom above gets energy kT/2 so that

〈|x2 − x1|2〉 =
3kBT

k
. (114)

B. The Langevin equations of motion on each particle are

dvi

dt
= −vi

τ
− 1

M

∂

∂xi

k(x2 − x1)2

2
+

fi

M
, (115)

where fi are independent noises with pair correlation function

〈f1i(t)f1j(t′)〉 = 2δijδ(t− t′)
MkBT

τ
, (116)

and similar expression for f2. The center of mass velocity V = [v1 + v2]/2 and coordinate X = [x1 + x2]/2 satisfy

dV

dt
= −V

τ
+

g

M
,

dX

dt
= V , g ≡ f1 + f2

2
. (117)

The relative velocity v = v2 − v1 and coordinate x = x2 − x1 obey

dv

dt
= −v

τ
− 2kx

M
+

h

M
,

dx

dt
= v, h ≡ f2 − f1. (118)

Note that the noises g and h are independent 〈gihj〉 ∝ 〈f1if1j〉 − 〈f2if2j〉 = 0. It follows that the center of mass
performs diffusion just like in the analysis in class, with the diffusion coefficient D = kBTτ/2M , that is one half the
diffusion coefficient of the single sphere. The latter formula can be seen by noting that 〈gi(t)gj(t′)〉 = 〈f1i(t)f2j(t′)〉/2
which is equivalent to the renormalizing the temperature by factor of two. Note that the result is independent of
the spring constant: center of mass motion does not know about the interactions. In particular the same diffusion
coefficient would hold for particles that don’t interact at all as follows from

〈X2(t)〉 =
1
4

[〈x2
1(t)〉+ 〈x2

2(t)〉+ 2〈x1(t) · x2(t)〉
] ≈ 〈x2

1(t)〉+ 〈x2
2(t)〉

4
=

Dst

2
, (119)

where Ds is the single particle diffusion coefficient, 〈x2
i (t)〉 ≈ Dst. Above the approximation holds at large times and

we used that xi are independent for non-interacting particles so that 〈x1(t) · x2(t)〉 = 〈x1(t)〉 · 〈x2(t)〉 = const by
conservation of 〈x1(t)〉. Also note that the center of mass diffusion coefficient is equal to the diffusion coefficient of
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the particle with twice the mass of each particle. Finally, the diffusion coefficient is independent of the mass of the
particles (cf. the Einstein-Stokes relation), since τ/M = 1/6πηa is independent of it.

C. Passing to Eq. (118) we observe that it can be written as

d2x

dt2
+

1
τ

dx

dt
+

2kx

M
=

h

M
. (120)

Performing Fourier transform of the above equation we find that in the steady state (where homogeneous part of the
solution of the above equation can be dropped) we have

[
−ω2 − iω

τ
+

2k

M

]
x(ω) =

h(ω)
M

. (121)

It follows that the spectrum of x defined by

〈xi(ω)xj(ω′)〉 = (2π)Eij(ω)δ(ω + ω′), (122)

obeys
∣∣∣∣−ω2 − iω

τ
+

2k

M

∣∣∣∣
2

Eij(ω) =
Eh

ij(ω)
M2

(123)

where Eh
ij(ω) is the spectrum of h that obeys

Eh
ij(ω) =

∫
〈hi(t)hj(0)〉eiωtdt = 2

∫
〈f1i(t)f1j(0)〉eiωtdt =

4MkBTδij

τ
. (124)

For the pair-correlation function of x we find

〈xi(t)xj(0)〉 =
∫ ∞

−∞
Eij(ω)e−iωt dω

2π
=

4kBTδij

Mτ

∫ ∞

−∞

e−iωt

|−ω2 − iω/τ + 2k/M |2
dω

2π

=
2kBTδij

M

∫ iε+∞

iε−∞

dω

2πi

exp[iωt]
ω

[
1

ω2 − iω/τ − 2k/M
− 1

ω2 + iω/τ − 2k/M

]
, (125)

where in the last line we used that the integral is an even function of t which can be easily seen from the expressions
in the first line. We also raised the integration line in the complex plane by an infinitesimal amount for convenience
in the following calculations. We note that we can close the contour in the upper half-plane and by Cauchy theorem
transform the integral into the contribution from the poles of the integrand. Noting that the poles that come from
the last term are always in the lower half-plane we obtain

〈xi(t)xj(0)〉 =
2kBTδij

M

∫ iε+∞

iε−∞

dω

2πi

exp[iωt]
ω

1
ω2 − iω/τ − 2k/M

. (126)

Note that by differentiating exp[iωt] in the integral one has
[

d2

dt2
+

1
τ

d

dt
+

2k

M

]
〈xi(t)xj(0)〉 = −2kBTδij

M

∫ iε+∞

iε−∞

dω

2πi

exp[iωt]
ω

, (127)

where the first term in brackets acts on the correlation function as an operator. At any t > 0 one can close the contour
to see that the integral in the RHS of the above equation is zero. This is not surprising: by Eq. (120) we have

[
d2

dt2
+

1
τ

d

dt
+

2k

M

]
〈xi(t)xj(0)〉 =

〈hi(t)xj(0)〉
M

, (128)

where the last term vanishes at t > 0 because h(t) is δ−correlated in time, while x(0) depends only on h(t) at t ≤ 0
leading to 〈hi(t)xj(0)〉 = 〈hi(t)〉〈xj(0)〉 = 0. Returning to Eq. (126) and introducing

ω1 =
i

2τ
+

√
− 1

4τ2
+

2k

M
, ω1 =

i

2τ
−

√
− 1

4τ2
+

2k

M
, (129)
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we have

〈xi(t)xj(0)〉 =
2kBTδij

M

∫ iε+∞

iε−∞

dω

2πi

exp[iωt]
ω(ω1 − ω2)

[
1

ω − ω1
− 1

ω − ω2

]
. (130)

The above integral is readily expressed in terms of the contributions of two poles as

〈xi(t)xj(0)〉 =
2kBTδij

M(ω1 − ω2)

[
exp[iω1t]

ω1
− exp[iω2t]

ω2

]
. (131)

which is our final answer. The above expression must be real which can be checked by considering separately the
cases where the square root in Eq. (129) is real and purely imaginary. At t = 0 we have

〈xi(t)xj(0)〉 = −2kBTδij

Mω1ω2
=

kBTδij

k
, (132)

which reproduces Eq. (114) after taking the trace. We also have from Eq. (131) that

d

dt
〈xi(t)xj(0)〉|t=0 =

2kBTδij

M(ω1 − ω2)
[i exp[iω1t]− i exp[iω2t]] |t=0 = 0. (133)

Observing that d/dt〈xi(t)xj(0)〉|t=0 is nothing but 〈vi(0)xj(0)〉 we see that the above agrees with the result obtained
from the equilibrium statistical mechanics dictating 〈vi(0)xj(0)〉 = 0. Note that Eq. (128), together with the last
two equations considered as input from equilibrium statistical mechanics, could be used as an alternative way to
determine 〈xi(t)xj(0)〉. This would necessarily lead to Eq. (131) showing the consistency of the whole calculation.
In particular, 〈xi(t)xj(0)〉 considered as a function of t describes an unforced damped harmonic oscillator with zero
initial velocity and finite deviation from zero. Finally, this is nothing but an expression of the Onsager principle,
stating that 〈xi(t)xj(0)〉 should relax in the same way as xi(t) in the absence of the random force.

D. For the correlation function of the relative velocity in the steady state we have

〈vi(t1)vj(t2)〉 =
d

dt1

d

dt2
〈xi(t1)xj(t2)〉 = − d2

dt21
〈xi(t1)xj(t2)〉, (134)

where we used that in the steady state 〈xi(t1)xj(t2)〉 is a function of t2− t1 only. Using the expression for 〈xi(t)xj(0)〉
we obtain

〈vi(t)vj(0)〉 = − d2

dt2
〈xi(t)xj(0)〉 =

2kBTδij

M(ω1 − ω2)
[
ω1e

iω1t − ω2e
iω2t

]
=

2kBTδij

iM(ω1 − ω2)
∂

∂t

[
eiω1t − eiω2t

]
.

The above way of determining the correlation function of the process derivative from the correlation function of the
process itself holds for stationary processes generally. Again one can check that the expression above is real. We
observe that the diffusion coefficient D which is proportional to

∫∞
0
〈v(t) · v(0)〉dt vanishes identically for the velocity

correlation function above. The correlation function is not sign-definite in this case: it changes sign which signifies
that there are anti-correlations in velocity. Such anti-correlations are natural consequences of the spring that after a
while causes the reversal in the original direction of motion of the oscillator. Note that vanishing of D is necessary
for consistency: otherwise the fluctuations of x would have to grow diffusively at large times.

E. The equations on all quantities, both coordinates and velocities, belong to the general type of equations of the
type

db

dt
= M̂b + f , (135)

where b(t) is some vector, M̂ is a constant matrix and f is a vector of random forces assumed Gaussian. The above
equation leads to the following expression for b in the steady state (assuming that the latter exists):

b(t) =
∫ t

−∞
exp[(t− t′)M̂ ]f(t′)dt′. (136)

It follows from the above expression that b(t) is a linear functional of a Gaussian process and hence it is also Gaussian.
We conclude that the statistics of x, X, v and V are all Gaussian and thus determined uniquely by the averages
and the dispersions. These can readily found using equipartition theorem and the description of diffusion that was
provided in class. Note that though for X there is no steady state still Gaussianity applies as was shown when the
diffusion was discussed.
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V. THEORY OF THERMODYNAMIC FLUCTUATIONS AND LINEAR LANGEVIN EQUATIONS FOR
SLOW VARIABLES

It turns out that the Brownian motion considered in the previous Section is a prototype problem for the general
theory of thermodynamic fluctuations near equilibrium. Let us start with an example.

A. Brownian motion of other variables

Consider a first-order isomerization reaction between two species called A and B. We denote the number of
molecules of each species by the same letters. Note that both, A and B are macroscopic variables of the order of
Avogadro number. The basic rate equations are

dA

dt
= −k1A + k2B,

dB

dt
= −k2B + k1A, (137)

The coefficients above are such that to ensure the conservation of the total number of molecules A+B. The equations
have equilibrium solution Aeq, Beq satisfying the equilibrium condition k1Aeq = k2Beq. Using the conservation of
A+B we may substitute two equations by one. Introducing the deviation C from equilibrium, C = A−Aeq = B−Beq,
we find

dC

dt
= −(k1 + k2)C. (138)

Thus the macroscopic deviation from equilibrium decays exponentially. Now if the system reaches thermal equilibrium
then by the general FDT there are fluctuations and in particular 〈C2〉eq is of the order of Avogadro number and cannot
vanish. The Onsager hypothesis leads to the following correlation function of fluctuations

〈C(t)C(t′)〉 = 〈C2〉eqe
−(k1+k2)|t−t′|. (139)

Obviously, Eq. (138) cannot lead to the above formula. As in our discussion of the Onsager hypothesis for Brownian
motion to account for fluctuations a random force or noise term should be added to the basic kinetic equation (138):

dC

dt
= −(k1 + k2)C + δF (t). (140)

The force δF (t) describes the molecular source of fluctuations. To have the correct equilibrium behavior we must
impose the FDT in the form

〈δF (t)δF (t′)〉 = 2(k1 + k2)〈C2〉eqδ(t− t′). (141)

Thus observation of particle number fluctuations over a very long time can be used to find a rate constant. Let us
now generalize the above example.

B. General equation for slow variables near equilibrium

Both the Brownian motion and the example above are particular cases of a very general dynamics holding near
equilibrium. This dynamics holds for slow or macroscopic variables. These variables are such that they change but a
little at time-scales sufficient for the rest of the system to relax to what is called the state of ”partial equilibrium”.
In the latter state the rest of the system can be characterized by a certain statistical ensemble which depends on the
values of the slow variables as parameters. Let us designate the slow variables by xi and assume that we already
subtracted the average so that equilibrium values of xi are zero. For example, components of velocity of Brownian
particle are slow variables. The variables xi have a characteristic time τ during which they relax to their equilibrium
(zero) values if excited initially. Now if τ is much larger than the relaxation time of the rest of the system then the
latter would be all the time in a ”quasiequilibrium” state determined by the instantaneous values of xi(t). In other
words, the rest of the system, ”fast variables” will be enslaved by slow variables, cf. our discussion in the first Section.
If we now write equations of motion for slow variables then they are closed - the impact of fast variables on the slow
ones is determined only by the values of the slow variables which enslaved the fast ones. As a result, the equation of
motion on xi takes the form

dxi

dt
= Ri(x1, x2, ..., xn), (142)
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where the function Ri is determined by the partial equilibrium state of the fast variables. If we consider small
deviations from equilibrium, then we can expand Ri in Taylor series. Keeping only the lowest order term we find

dxi

dt
= −λikxk, (143)

where the summation convention over repeated indices is assumed. To explain the above notions, we consider again
the example of Brownian motion.

C. The Onsager reciprocal relations

We have seen above that the relaxation of the slow variable v obeys the equation v̇i = Fi(v)/M , where the force
F (v) in linear in a range of velocities far exceeding the characteristic thermal velocity. The equation on v gets closed
because the state of the fast degrees of freedom of the system - the degrees of freedom of the fluid - is determined
uniquely by v, see Eqs. (??). As a result the force which the fast variables exert on the slow variable is determined
by the latter uniquely, leading to an equation of the type v̇i = Fi(v)/M .

Generally the theory of fluctuations of slow variables near equilibrium assumes the generalized force equation (142)
where the ”force” Ri(x1, x2, .., xn) obeys

Ri(x1, x2, .., xn) ≈ −λikxk, |xi| ¿ x0, (144)

with x0 À max〈x2
i 〉1/2. The above condition guarantees that equilibrium fluctuations all occur in the region of linear

reaction of the system and it allows to employ the linear relaxation equations (143) in the range max〈x2
i 〉1/2 ¿ |xi| ¿

x0. Let us stress that the latter equations are deterministic and hold for every realization of the relaxation process.
We also stress that is assumed that xi represent a complete set of slow variables, i. e. xi(t) characterize the relaxation
process completely and no additional deviations from the equilibrium arises (to give a simple example: the relative
coordinate in the dumbbell model of the polymer is not a complete set of slow variables as its excitation also leads to
the excitation of the relative velocity).

Different time correlation functions ϕij(t) ≡ 〈xi(t)xj(0)〉 obey special symmetry properties following from the time
reversal symmetry of the microscopic dynamics. Since by the Onsager principle these functions satisfy

dϕij

dt
= −λikϕkj , (145)

then the coefficients λik must obey a constraint ensuring that the correlation functions obtained via the equation
above obey the required symmetry properties. Let us derive this constraint.

By the stationarity of the equilibrium state we have that 〈xi(t)xj(0)〉 = 〈xi(0)xj(−t)〉 or ϕij(t) = ϕji(−t). Formally
this property could be seen by considering the pair correlation function of two dynamical variables Fi(p, q) as it was
defined by Eq. (98), which we for convenience reproduce here

〈F1(t)F2(0)〉 ≡
∫

dp0dq0Peq(p0, q0)F1[p(t|p0, q0), q(t|p0, q0)]F2[p0, q0]. (146)

Let us introduce new integration variables p′ = p(t|p0, q0) and q′ = q(t|p0, q0). Then because the Hamiltonian in the
equations of motion has no explicit time dependence, one can write the inverse transformation as p0 = p(−t|p′, q′)
and q0 = q(−t|p′, q′) which leads to

〈F1(t)F2(0)〉 =
∫

dp′dq′Peq(p′, q′)F1[p′, q′]F2[p(−t|p′, q′), q(−t|p′, q′)] = 〈F1(0)F2(−t)〉, (147)

which is the desired relation. Above we used that the stationary probability weight is conserved along the dynamical
trajectory, Peq(p0, q0)dp0dq0 = Peq(p′, q′)dp′dq′. To derive the relation due to the time reversal symmetry, we make
another change of variables in the integral in Eq. (146): we switch from p0 to −p0, leaving q intact. Noting that the
time-reversal symmetry of mechanics implies

p(t| − p0, q0) = −p(−t|p0, q0), q(t| − p0, q0) = q(−t|p0, q0), (148)

(the functions on the RHS of the above equations satisfy the Hamilton equations (99) with initial conditions (−p0, q0))
we find

〈F1(t)F2(0)〉 =
∫

dp0dq0Peq(−p0, q0)F1[−p(−t|p0, q0), q(−t|p0, q0)]F2[−p0, q0]. (149)
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If neither a magnetic field nor an angular rotation are present in the system, then the equilibrium state is time-reversal
invariant, Peq(−p0, q0) = Peq(p0, q0). If in addition both dynamical variables are either invariant under time-reversal
(Fi[−p0, q0] = Fi[p0, q0]) or both change sign under time-reversal (Fi[−p0, q0] = −Fi[p0, q0]) then we obtain

〈F1(t)F2(0)〉 =
∫

dp0dq0Peq(p0, q0)F1[p(−t|p0, q0), q(−t|p0, q0)]F2[p0, q0] = 〈F1(0)F2(t)〉, (150)

where we used stationarity. It follows that for two variables xi, xj with the property above one has ϕij(t) = ϕji(t)
that is the matrix ϕij is symmetric. In the case that one of the variables changes sign under time-reversal while the
other does not, one would obtain antisymmetry ϕij(t) = −ϕji(t). Finally, if magnetic field or angular rotation are
present in the system, then Peq(−p0, q0) = Peq(p0, q0) no longer holds true. However, taking as example the case
with a magnetic field H, and considering Peq and ϕij(t) as functions of H, one can generalize the above relations
employing Peq(−p0, q0,−H) = Peq(p0, q0, H).

The symmetry of ϕij(t) implies by Eq. (145) that exp[−tλ̂]ϕ̂(0) must be a symmetric matrix, where ϕ̂(0)ij = 〈xixj〉
is symmetric by definition (we designate matrices by hats). The corresponding implication for the coefficients λij

is expressed most clearly by introducing conjugate thermodynamic forces as follows. We note that the state with
given values of xi is a non-equilibrium state, the partial equilibrium state mentioned before. One can associate a
well-defined entropy with this partial equilibrium state which will be a function of xi only. In the Brownian motion
example, this entropy is the entropy of the fluid which hydrodynamic state is imposed by the value of the slow variable
so that S = S(v). In general, we introduce entropy S as a function of xi. This function S(x1, x2, .., xn) is maximal at
xi = 0 so that its general expression at small xi is

S = Seq − 1
2
βijxixj , (151)

where the positive definite matrix βij is symmetric. The above quadratic approximation to entropy normally ap-
plies in the same range of xi as the linear approximation to the force given by Eq. (144). We now introduce a
thermodynamically conjugate variable to xi by

Xi ≡ − ∂S

∂xi
= βijxj . (152)

At equilibrium xi and Xi vanish simultaneously. Now we may rewrite Eq. (143) in terms of Xi as

ẋi = −γijXj , γij = λikβ−1
kj . (153)

The coefficients γij are called kinetic coefficients and the Onsager reciprocal relation states that these coefficients are
symmetric,

γij = γji. (154)

To see the above relation we note that Eq. (153) by the Onsager hypothesis implies that

ϕij(t) = (exp[−tγ̂])ik 〈Xkxj〉eq. (155)

The crucial observation is that the equilibrium averages 〈Xkxj〉eq obey 〈Xkxj〉eq = δkj , that the implies Eq. (154) by
the equation above and ϕij(t) = ϕji(t). The latter identity is a consequence of the Einstein formula that states that
the probability density function of slow variables in equilibrium satisfies

P (x1, x2, .., xn) ∝ eS(x1,x2,..,xn) ∝ exp
[
−1

2
βijxixj

]
. (156)

The formula can be seen as the statement of the microcanonical ensemble that the probability of given values xi is
proportional to the volume of the phase space (or the number of states) corresponding to those values (remind that
entropy if the logarithm of the number of states). Introducing δS = −βijxixj/2 and normalization factor N one has

〈xkXi〉 = − 1
N

∫
xk

∂δS

∂xi
eδSdx = − 1

N

∫
xk

∂

∂xi
eδSdx = δik, (157)

where we integrated by parts using the normalization of the probability. For the entropy production rate we have

dS

dt
=

∂S

∂xi
ẋi = −Xiẋi = γijXiXj . (158)
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It follows that γij must a positive definite matrix. Note also that the above relations are completely symmetric with
respect to the exchange of xi and Xi, one has:

S = Seq − 1
2
β−1

ij XiXj , xi = − ∂S

∂Xi
,

dS

dt
=

∂S

∂Xi
Ẋi = −xiẊi. (159)

This symmetry reflects that both xi and Xi can be considered as non-equilibrium coordinates on equal footing.

D. The general fluctuation-dissipation theorem

The linear relaxation equations described above apply at xi À 〈x2
i 〉1/2. When xi become comparable with the

typical amplitudes of their thermal fluctuations, one needs to introduce into the equations a random component of
the force which does not vanish in equilibrium with xi = 0. This is just like in the case of the Brownian motion. The
resulting general Langevin equation reads

dx

dt
= −λx + F (t), (160)

where λ is a matrix with coefficients λij and F is a random vector force with pair correlation

〈Fi(t)Fj(t′)〉 = 2Bijδ(t− t′). (161)

Note that by definition Bij is a symmetric matrix. We now determine the amplitude B of the force fluctuations
in terms of λ and equilibrium fluctuations of xi, thus generalizing the fluctuation-dissipation theorem we had for
Brownian motion. For a system that approaches equilibrium all eigenvalues of λ must have a positive real part,
however they can be complex (cf. the dumbbell model of the polymer considered in class). Then the contribution of
the initial conditions in the solution

x(t) = e−tλx(0) +
∫ t

0

dse−(t−s)λF (s) (162)

of Eq. (160) decays at large times and the steady state expression for x can be written as

x =
∫ t

−∞
dse−(t−s)λF (s). (163)

This leads to the following expression for the equilibrium correlation matrix Mij ≡ 〈xixj〉:

Mij =
∫ t

−∞
ds

∫ t

−∞
ds′e−(t−s)λ

ik 〈Fk(s)Fl(s′)〉e−(t−s′)λT

lj , (164)

where T stands for the transpose. Averaging the above equation with the help of Eq. (161) and changing the
integration variable, we find a matrix relation

M = 2
∫ ∞

0

dte−tλBe−tλT

. (165)

To evaluate the time integral we consider the symmetrized matrix λM + MλT that is given by

λM + MλT = 2
∫ ∞

0

dtλe−tλBe−tλT

+ 2
∫ ∞

0

dte−tλBe−tλT

λT = −2
∫ ∞

0

dt
d

dt
e−tλBe−tλT

= 2B,

where the contribution of the upper limit of integration vanishes because the eigenvalues of λ all have positive real
parts. We find the fluctuation dissipation theorem, which expresses the amplitude of the fluctuations of the random
force in terms of matrix of the ”friction” coefficients λ and the equilibrium correlation functions M :

λM + MλT = 2B. (166)

Note that by their definition as the second moments, both M and B are symmetric while generally λ is not. Using
Einstein formula for the probability density function of xi

P (x1, x2, .., xn) =
1
N

exp
[
−1

2
βijxixj

]
, (167)
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one has Mij = β−1
ij . It follows from the definition of the kinetic coefficients that (λM)ij = λikβ−1

kj = γij . It follows
that

Bij =
γij + γji

2
. (168)

In the case where time-reversal symmetry implies symmetry of 〈xi(t)xj(0)〉, we have that γ is a symmetric matrix
and B is just equal to γ:

Bij = γij , (169)

that is the kinetic coefficients give directly the amplitude of fluctuations of the random component of the force.

E. Generalization to fields

Among the most important and interesting applications of the general theory of fluctuations of slow variables near
equilibrium is the application to the case where the slow variables experiencing relaxation are fields. An important
class of such fields is provided by densities of locally conserved charges, see the next subsection. It is therefore
important to generalize the relations of the last subsection to this case. Here part of the indices of the set of slow
variables is continuous with spatial points playing the role of these indices. We consider the general case where the
slow variable is a vector field φi(x). The field relaxation to its equilibrium (mean) value φi(x) = 0 is described by
the general linear equation

∂φi(x, t)
∂t

= −
∫

λij(x,x′)φi(x′, t)dx′. (170)

The expression for entropy in non-equilibrium state defined by a macroscopic deviation of φi(x) from equilibrium is
given by

S = Seq − 1
2

∫
φi(x)βij(x, x′)φj(x′)dxdx′, (171)

where βij(x, x′) is a symmetric kernel. The force Φi(x) thermodynamically conjugate to φi(x) is

Φi(x) = − δS

δφi(x)
=

∫
βij(x, x′)φj(x′). (172)

We have

〈φi(x)Φj(x′)〉 = −
∫

Dφφi(x)
δS

δφi(x)
eδS = 〈 δφi(x)

δφj(x′)
〉 = δijδ(x− x′), (173)

where Dφ is a functional integral. If we define linear operator γ̂ by the equation

∂φi(x, t)
∂t

= −
∫

γij(x, x′)φi(x′)dx′ ≡ −γ̂Φ, γij(x, x′) =
∫

dx′′λik(x, x′′)β−1(x′′,x′), (174)

then the use of the Onsager hypothesis gives

〈φi(x, t)φj(x′, 0)〉 = exp [−tγ̂] (x, x′). (175)

If the symmetry properties of φi(x) under time-reversal are the same then L̂ is a symmetric operator which means that
its kernel γij(x, x′) does not change under the interchange of i with j and x with x′. Straightforward generalization
holds for the cases of different time-reversal properties or to the cases with a magnetic field or an angular rotation.

F. Locally conserved charges as slow variables. Diffusion equation

A very important application of the theory of fluctuations of slow variables is the description of near equilibrium
fluctuations of locally conserved charges. A locally conserved charge ρ(x, t) is a field which microscopic equation of
motion has a form

∂ρ(x, t)
∂t

+∇ · j(x, t) = 0, (176)
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where j(x, t) is called a current. The above equation is a local conservation law: it is not only that
∫

ρ(x, t) is
conserved but it is conserved locally. The ”amount” of ρ inside any volume V changes only due to the flux through
the boundaries

d

dt

∫

V

ρ(x, t)dx = −
∫

j · dS. (177)

Thus, while conservation of the total amount
∫

ρ(x, t) allows ρ to disappear in one region and reappear in a completely
different region, the locality of the conservation law forbids such a possibility: the charge must pass through the
intermediate regions. One can say that the charge flows. Consider as an example quantum mechanics of a single
particle with wave-function ψ. Naturally,

∫ |ψ|2dx, which describes the total probability to find the particle anywhere
in space is conserved and equal to one. However, its conservation by itself does not guarantee that the particle will
not disappear in one region and reappear in another, faraway, region (which would make things look quite like magic),
it is the fact that |ψ|2 satisfies a law of the form (176) that guarantees that. Thus locality is a very essential physical
property. Other examples of locally conserved charges include densities of mass, electric charge, momentum, energy,
spin etc.

Locally conserved charges are natural, universal examples of slow variables. Applying Fourier transform to Eq. (176)
one has

∂ρ(k, t)
∂t

= ik · j(k, t). (178)

Thus non-equilibrium perturbations of a locally conserved charge which have a sufficiently long-wavelength (small k)
will always decay slowly. Hence these are slow variables and the theory we described above should apply to them. As
a first example of the use of the theory let us consider a fluid of particles where each particle carries a definite value
of magnetic moment along some fixed axis. It is assumed that the magnetic moment of each particle is not changed
by interactions with other particles. Then the (locally conserved) density of magnetic momentum is

ρ(x, t) =
N∑

i=1

miδ[x− xi(t)] (179)

where particles magnetic momenta mi obey mi = ±|m| and the total magnetic moment is zero,
∑

mi = 0. If we
now create say a periodic perturbation of ρ(x, 0) in space such that the wavelength is sufficiently large then the
relaxation of this perturbation is going to be slow. More generally, we may consider ρ(x, 0) such that its Fourier
image is supported mainly at small wave numbers. We consider near equilibrium fluctuations in the range where
linear decay law holds while the fluctuating component of the ”force” can be neglected. The theory of slow variables
says then that ρ(x, t) satisfies a closed equation which signifies that j(x, t) should be expressible in terms of ρ(x, t).
The corresponding relation between j and ρ is called a constitutive relation. Since the equations on ρ must be linear,
the most general form of the constitutive relation is

ji(x, t) =
∫

dx′Ki(x, x′)ρ(x′, t) (180)

where K is some kernel which due to the spatial homogeneity of the equilibrium state depends only on the difference
of coordinates, Ki(x, x′) = Ki(x− x′). Since in equilibrium with ρ(x, t) = const there must be no current we have

∫
dxKi(x) = 0. (181)

While some exceptions to the equation above are possible (where the current has a non-vanishing constant component),
in general the equation holds true. We now make an assumption, which is normally true, that the kernel K has some
finite range l (if there are fluctuations of ρ far away, the current here can be neglected). Then for sufficiently long
wavelength perturbations of ρ with λ À l, the Taylor expansion of ρ in the integrand will produce the leading order
expression for j(x, t) in the small parameter l/λ. We have

ji(x, t) =
∫

dx′Ki(x− x′)
[
ρ(x, t) + (x′j − xj)∇jρ(x, t) + ..

] ≈ −Dij∇jρ(x, t), Dij ≡
∫

Ki(x)xjdx (182)

where we took into account Eq. (181). If in addition the system is isotropic then Ki(x) = xiK(|x|) and Dij = Dδij .
We conclude that for isotropic system with a kernel K vanishing fast outside a finite range of interactions, the current
associated with a slowly varying in space, non-equilibrium distribution of concentration is

j(x, t) = −D∇ρ(x, t). (183)
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The above expression can be understood as follows. When the field ρ relaxes to its equilibrium value, it does so
slowly, so that the rest of variables of the system are enslaved by ρ, in particular, the current j. This current should
determined by ρ locally because the exchange of ρ between different parts of the system takes place locally. As the
gradients of ρ are small, it is enough to take the first nonvanishing term in the expansion in the powers of the gradient
which has the general form −D∇ρ with some coefficient ρ. The above expression for the current leads to the diffusion
equation for ρ,

∂ρ

∂t
= D∇2ρ, (184)

so that we recognize that D is in fact the diffusion coefficient of magnetic momentum. For the low wave-number
Fourier components of ρ, which are the slow variables behind the treatment, the above equation implies that

∂ρ(k, t)
∂t

= −Dk2ρ(k, t), kl ¿ 1. (185)

The above equation is completely analogous to the equation ẋ = −λx on a single slow variable x. In fact, we could
write ∂tρ(k, t) = −λ(k)ρ(k, t) as a particular case of the general equation (143) without any preliminary treatment
- the excitation of ρ(k) does not lead to an excitation of other Fourier harmonics of ρ by the spatial homogeneity.
Indeed, the latter implies that the general form of the equation on ρ is ∂tρ(x, t) =

∫
λ(x − x′)ρ(x′, t)dx′ which

Fourier transform is ∂tρ(k, t) = −λ(k)ρ(k, t). Now just as the equation ẋ = −λx holds only for x in the range
〈x2〉1/2 ¿ |x| ¿ xnlin where xnlin gives the limit of applicability of linear approximation to the relaxation, so
Eq. (185) holds for 〈|ρ(k)|2〉 ¿ |ρ(k)| ¿ ρnlin(k), where ρnlin(k) is the limit of applicability of linear approximation.

The non-trivial information contained in the diffusion equation is that the leading order behavior of λ(k) at small
k is λ(k) = Dk2. Clearly, this has the form of the leading order term in the Taylor expansion of λ(k) that takes
into account λ(k = 0) = 0, where the latter demand is a consequence of the exact dynamical equation (178). We
observe that diffusion equation should hold, as it does indeed, in a great variety of situations. It provides a universal
description of a linearized decay of a scalar field, which zero wave-number Fourier is conserved, under the assumption
of spatial homogeneity and isotropy (the latter demand, leading to λ′(k = 0) = 0, ensures that the first order term in
the Taylor expansion of λ(k) vanishes). An additional, most crucial assumption here is that λ(k) is analytic at k = 0,
which is by no means evident. Note that the physical meaning of the approximation λ(k) ≈ Dk2 is easier understood
in real space, where one sees that the condition of small k is kl ¿ 1 where l is the range of the current kernel.

Equation (185) implies that the Fourier harmonics of ρ(r, t) decay exponentially according to

ρ(k, t) = exp[−t/τk]ρ(k, 0), τk = (Dk2)−1. (186)

Thus ρ(k, t) relaxes within a characteristic time-scale (Dk2)−1 becoming infinite at k → 0. The relaxation leads
to a state where only ρ(k = 0) is present, corresponding to homogeneous distribution in space. The above implies
an additional constraint on k for Eq. (185) to hold. This follows from the consistency demand that states that the
relaxation time of the slow variable (Dk2)−1 is much larger then the relaxation time τrel of the fast variables to the
partial equilibrium state determined by n(r). The time-scale τrel is a characteristic time-scale of molecular dynamics.
Considering as an example a system of classical particles with mass m which interact via a pair potential of strength
ε and range a, one obtains by dimensional arguments that τrel ∼ a(m/ε)1/2 (which typically produces numbers like
10−12 seconds, i. e. vanishingly small on a macroscopic time-scale). Thus Eq. (185) must be supplemented by the
condition (Dk2)−1 À τrel. The condition always becomes true at a sufficiently small k, demonstrating again the
self-consistency of the analysis.

The description of the relaxation of ρ(r, t) in real space is left for the exercise. Here we only provide the basic
solution of the diffusion equation that describes the decay of the initial perturbation ρ(r, 0) = ρ0δ(r) localized at a
point. The solution of the diffusion equation with this initial condition is

ρ(r, t) =
ρ0

(4πDt)3/2
exp

[
− r2

4Dt

]
. (187)

The solution describes a self-similar decay of the perturbation where density profile at a later time can be obtained
from the profile at an earlier time by mere rescaling of the coordinates on both axes.

Finally, in the case of density, the property that ρ(k, t) is a slow variable at small k can be also seen by noting
that ρ(k) is formed by spatial perturbations with characteristic scale k−1. Such perturbations involve typically about
〈ρ〉k−3 particles. At small k this number of particles is large saying that ρ(k) characterizes so to say ”heavy”, and
thus slow, perturbations of large numbers of particles.
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G. Spin correlation function and Kubo formula for diffusion coefficient

By the Onsager hypothesis the diffusion equation that describes the decay of small perturbations from equilibrium,
also describes the decay of the equilibrium correlation function. Here we establish the corresponding form of the
correlation function and derive the so-called Kubo formula for the diffusion coefficient D. For clarity, we specify to a
particular kind of density, the magnetization density M(r, t) defined by

M(r, t) =
∑

i

miδ [r − ri(t)] . (188)

It is assumed that particle interactions conserve mi so that differentiating over time we obtain the local conservation
law

∂M

∂t
= −∇ · jM , jM ≡

∑

i

mi
dri

dt
δ [r − ri(t)] , (189)

where jM is the magnetic current. We now consider equilibrium fluctuations of M(r, t) and, in particular, the spin
correlation function

S(r, t) ≡ 〈M(r, t)M(0, 0)〉. (190)

At equilibrium 〈M〉 = 0 so that S(r, t) characterizes the fall of correlations in M with space and time separations.
For example the equal time correlation function S(r, t = 0) = 〈M(r)M(0)〉 is expected to decay fast at r À lcor

where lcor is a finite correlation range of magnetization fluctuations.
Let us note that (long-wavelength) equilibrium fluctuations of M(r, t) can be represented as a sum of independent

fluctuations of M(k, t), that is the random variables M(k, t) in M(r, t) =
∫

M(k, t) exp[ik · r]dk/(2π)d are inde-
pendent. The statistical independence of different Fourier harmonics is a consequence of spatial homogeneity which
implies that 〈M(k, t)M∗(k′, 0)〉 ∝ δ(k − k′) [here the superscript ∗ stands for complex conjugation and we used
M(−k) = M∗(k)]. Noting that according to the Einstein formula the probability density functional (PDF) of M(k, t)
is Gaussian [the PDF is proportional to the exponent of entropy S where

S = Seq − 1
2

∫
β(x− x′)M(x)M(x′)dxdx′ = Seq − 1

2

∫
dk

(2π)d
β(k)M ∗ (k)M(k), (191)

cf. Eq. (171)] and that 〈M(k)〉 = 0 we conclude that M(k) with different k are independent. Thus consideration of
the correlation function S(r, t) is performed easier in the Fourier space. We introduce

S(k, t) =
∫

e−ik·r〈M(r, t)M(0, 0)〉. (192)

The Onsager hypothesis and Eq. (185) imply that

∂S(k, t)
∂t

= −Dk2S(k, t), kl ¿ 1, (193)

so that

S(k, t) = exp[−Dk2|t|]S(k, 0), kl ¿ 1, (194)

where we used that S(r, t) must be an even function of t because it represents correlation of two variables with the
same transformation rule under the time-reversal. We observe that to find S(k, t) we need to know S(k, 0) at small
k. The latter can be expressed with the help of the magnetic susceptibility χ defined by

χ =
∂〈M〉h
∂h|h=0

, (195)

where 〈M〉h is the average value of the magnetic moment in the presence of the magnetic field h. This average can be
determined by methods of the equilibrium statistical mechanics. We note that in the presence of the magnetic field
h the Hamiltonian of the system is given by H ′ = H −Mtoth where H is the system Hamiltonian at h = 0 and M tot

is the total magnetic moment of the system. Note that 〈M〉 = 〈Mtot〉/V so that we have

χ =
∂

∂h|h=0

1
V

trMtot exp[−βH + βMtoth]
tr exp[−βH + βMtoth]

=
β

V

trM2
tot exp[−βH]

tr exp[−βH]
=

β〈M2
tot〉

V
, (196)
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where we used that

trMtot exp[−βH]
tr exp[−βH]

= 〈Mtot〉eq = 0. (197)

Using Mtot =
∫

M(r)dr we obtain

χ =
β

V

∫
〈M(r1)M(r2)〉dr1dr2 =

β

V

∫
S(r1 − r2, 0)dr1dr2 = β

∫
S(r, 0)dr = βS(k = 0, 0). (198)

Thus we obtain that for k−1 much larger than the scale lcor beyond which S(r, 0) decays, we have

S(k, 0) ≈ S(k = 0, 0) = χkBT, (199)

where we assumed that S(k, 0) is analytic at k = 0. Since normally the static correlation length lcor is smaller or of
the order of the dynamic correlation length l, then we shall assume that Eq. (199) holds in the range kl ¿ 1 which
produces

S(k, t) = exp[−Dk2|t|]χkBT, kl ¿ 1. (200)

The above formula describes the decay of correlations of M(k, t) and it has the same form of purely exponential decay
as the correlation function of the velocity of a Brownian particle. For S(k, ω) =

∫
S(k, t) exp[iωt]dt we find

S(k, ω) = 2χkBT
Dk2

(Dk2)2 + ω2
, kl ¿ 1, (201)

which is proportional to the spectrum of fluctuations of M(k, t). The above formula has the same form as the spectrum
of velocity of a Brownian particle with τ substituted by the relaxation time (Dk2)−1 of M(k, t). Let us note that
even though the expression (201) can be expected to correspond to the asymptotic form of S(k, ω) at small k and ω,
it does not have a simple analytic behavior at small k and ω:

lim
k→0

lim
ω→0

S(k, ω) = ∞, lim
ω→0

lim
k→0

S(k, ω) = 0, (202)

that is the limits don’t commute. It is possible to express S(k, ω) in terms of another object that already has a nice
analytic properties at small k and ω - this is the content of the so-called dispersion relation representation which is
beyond our scope here.

We note the following representation of the diffusion coefficient

Dχ =
β

2
lim
ω→0

lim
k→0

ω2

k2
S(k, ω). (203)

Despite the apparent emptiness of the above relation, its elaboration allows one to obtain an important Kubo formula
for the diffusion coefficient. Performing Fourier transform of Eq. (189) both over spatial and temporal coordinates we
find M(k, ω) = −k · jM (k, ω)/ω (here we don’t need to deal with the possible boundary terms as we plan to use the
relation for the spectra). It follows that the magnetic current spectrum Eij(k, ω), defined by

Eij(k, ω) =
∫

drdt exp[iωt− ik · r]〈ji(r, t)jj(0, 0)〉, (204)

satisfies

kikj

ω2
Eij(k, ω) = S(k, ω) = 2χkBT

Dk2

(Dk2)2 + ω2
, kl ¿ 1. (205)

Isotropy implies that the leading order term in Eij(k, ω) at small k is Eij(k, ω) = Ellδij/3 which leads to

Ell(k, ω)
3

= 2χkBT
Dω2

(Dk2)2 + ω2
, kl ¿ 1. (206)

We find

Dχ =
β

2
lim
ω→0

lim
k→0

Ell(k, ω)
3

=
1

3kBT
lim
ω→0

∫ ∞

0

eiωtdt

∫
dr〈jM (r, t) · jM (0, 0)〉. (207)
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where we used the definition (204) and assumed that the limit k → 0 is regular, i. e. equal to the value of the expression
at k = 0 (which is not necessarily true for ω → 0 limit). The above formula can be rewritten by introducing the total
magnetic current

JM (t) =
∫

jM (r, t)dr. (208)

We have

1
2
〈[JM (t),JM (0)]s〉 = V

∫
〈jM (r, t) · j(0, 0)〉dr, (209)

where JM on the LHS should be considered as a quantum operator and we defined the symmetrization operation so
that

[JM (t), JM (0)]s = JM (t) · JM (0) + JM (0) · JM (t). (210)

The equality (215) between a quantum mechanical expression and a classical one holds because the average is deter-
mined by low wave-number components of j(k, t) which have classical behavior. The symmetrization is needed to
avoid a non-physical imaginary part in the final expression that reads

Dχ = lim
ω→0

1
3V kBT

∫ ∞

0

eiωtdt
1
2
〈[JM (t),JM (0)]s〉. (211)

The above formula is the Kubo formula for the diffusion coefficient. It expresses D in terms of the equilibrium
fluctuations of the current and it is an example of the fluctuation-dissipation theorem. The Kubo derivation of the
formula uses the linear response theory not considered here. While for slow variables, one can perform a derivation
similar to the above to get the Kubo formula, the linear response theory allows to deal with variables which are not
necessarily slow and thus is more general in this respect.

VI. HYDRODYNAMIC FLUCTUATIONS

One of the applications of the theory of the dynamics of slow variables near equilibrium, which is of most universal
nature, is the theory of hydrodynamic fluctuations. This theory describes both equilibrium fluctuations and relaxation
to equilibrium in a wide variety of gases and liquids corresponding to a normal fluid. A normal fluid is a thermodynamic
system with the macroscopic fluid behavior that has the property that the only slow variables with arbitrarily large
relaxation times are provided by the low wave-number components of the densities of mass, momentum and energy.
The symmetries of spatial homogeneity and isotropy are assumed. It should be stressed that the theory described below
applies universally to a large class of gases and liquids independently of the details of their molecular interactions.

The signature of a normal fluid is a particular form of the so-called dynamical structure factor Sρρ(k, ω) defined by

Sρρ(k, ω) =
∫ ∞

−∞
dt

∫
dreiωt−ik·r〈〈ρ(r, t)ρ(0, 0)〉〉, (212)

where ρ is the mass density of the fluid and the double angular brackets stand for the dispersion. Here and below we
shall put the fluid particle mass equal to unity - in the end of the calculations the mass can be restored by dimensional
considerations. Note that S(k, ω) is a positive function. To show this one uses an identity that we shall use a lot and
so we provide it generally - for any two fields f and g, like the densities of conserved charges, we have by the spatial
homogeneity that

〈f(k, t)g(−k, 0)〉 =
∫

drdr′ exp[−ik · (r − r′)]〈f(r, t)g(r′, 0)〉 = V

∫
dr exp[−ik · r]〈f(r, t)g(0, 0)〉, (213)

where V is the system volume. It is easy to see from the above that S(k, ω) is proportional to the spectrum of
fluctuations of ρ(k, t) and as such it must be non-negative. The importance of the dynamical structure factor is that
it is directly accessible via neutron or light scattering experiments. One finds that for any normal fluid a universal
form of Sρρ(k, ω) as a function of ω holds at small k. This form consists of three peaks - one centered at ω = 0
(Rayleigh peak) and two symmetric peaks (Brillouin peaks) centered at ω = ±csk where cs is the speed of sound.
All peaks have Lorentzian shape with width proportional to k2. This width describing the finite life time of the
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corresponding excitation that grows as k−2 at small k is a signature of hydrodynamic processes, cf. the discussion of
diffusion in the previous section. PICTURE

At the late stage of relaxation to equilibrium in normal fluids the only remaining variables out of equilibrium are
the low wave-number components of the densities of mass, momentum and energy. The rest of the system is in
the partial equilibrium state with respect to these slow variables. To see this consider the relaxation to equilibrium
from an arbitrary initial state. First, dynamical variables mix fast locally leading to the system relaxation to the
local equilibrium state characterized by the local density, momentum and energy. The latter variables are forbidden
to relax locally due to the local conservation law satisfied by them. The relaxation of the densities of the mass,
momentum and energy happens only due to their exchange between spatially separated parts of the fluid. Such
exchange involves transport of densities in space and it is associated with a long time-scale as compared to the time-
scale of relaxation to local equilibrium. The exchange gradually erases perturbations in the densities starting with
the smaller wavelength perturbations that demand transport over a smaller scale and occur faster. At a certain stage
only perturbations with very small wavenumbers remain and these can be described by hydrodynamics as explained
below. Thus hydrodynamics provides universal description of the late stage of relaxation in fluids.

The conservation laws of the mass density ρ, the momentum density g and the energy density E read

∂ρ

∂t
+∇ · g = 0,

∂gi

∂t
+

∂τij

∂xj
= 0,

∂E

∂t
+∇ · jE = 0, . (214)

where τij is the momentum flux tensor and jE is the energy flux. In the Fourier space Eqs. (214) take the form

∂ρ(k, t)
∂t

+ ik · g(k, t) = 0,
∂gi(k, t)

∂t
+ ikjτij(k, t) = 0,

∂E(k, t)
∂t

+ ik · jE(k, t) = 0. (215)

According to the theory of fluctuations of slow variables the slow variables satisfy closed equations so that at sufficiently
small k the currents g(k, t), τij(k, t) and jE(k, t) must be expressible in terms of the slow variables ρ, g and E. As
mentioned already, the corresponding relation is called a constitutive relation. Notably the density current g is by
itself a conserved quantity and it does not need any additional constitutive relation: one can say that microscopic
and macroscopic laws coincide in the case of the continuity equation (the equation on ρ). To address the form of
the constitutive relations for τij and jE we note that after the use of the constitutive relations the general equation
describing the relaxation of Fourier harmonics of ρ, g and E would take the form

∂xi(k, t)
∂t

= λij(k)xj(k, t), (216)

where x1(k, t) = ρ(k, t), x2(k, t) = E(k, t) and xi(k, t) = gi−2(k, t) for i = 3, 4, 5. The above form is implied by the
spatial homogeneity, see the corresponding discussion in the derivation of the diffusion equation. Note that xi and
λij are generally complex. Assuming that the currents have no singularity at k = 0 we conclude immediately from
Eq. (215) that λij(k = 0) = 0. Like in the case of the diffusion equation we wish to describe the relaxation process to
leading order in k assuming the latter is small. While in the case of the diffusion equation the isotropy implied that
λ(k) is a function of |k| only and thus its derivative must vanish at the origin in k−space, λ′(k = 0) = 0, here λij may
contains tensors including k and thus depend not only on the magnitude of k but also on its direction. As a result
the derivatives of λij(k) do not vanish at the origin generally and the leading order term in the Taylor expansion of
λij(k) at small k is λij = Cijlkl with constant coefficients Cijl = ∂lλij(k = 0). Let us determine these coefficients.

A. Linearized equations of hydrodynamics to first order in derivatives

It is convenient to perform the consideration in real space. The equation ẋi = Cijlxjkl after the inverse Fourier
transform produces a linear equation on ρ(x, t), g(x, t) and E(x, t) which is local in space and contains spatial
derivatives of the fields of order not higher than the first one. Equations (214) then imply that this approximation
corresponds to expressing τij and jE in terms of the local values of ρ, g and E. To introduce the expressions it is
convenient to introduce the momentum and the energy per unit mass of the fluid, v and ε respectively, via

v(r, t) ≡ g(r, t)
ρ(r, t)

, ε ≡ E(r, t)
ρ(r, t)

. (217)

Note that v is nothing but the local velocity of the fluid. The passage from ρ, g and E to ρ, v and ε is one to one
and we may consider now the expressions for τij and jE in terms of ρ, v and ε. These expressions are

τij = pδij , jE = (ρε + p)v, (218)
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where p is the pressure which is determined in terms of ρ and ε via the thermodynamic equation of state. Let us explain
the above expressions, first providing a physical explanation and then a more formal one. The above expressions for
the currents imply [cf. Eq. (177)] that the time derivatives of the momentum and the energy within some volume of
the fluid are given by

∂

∂t

∫

V

ρ(r, t)v(r, t)dr = −
∫

pdS,
∂

∂t

∫

V

ρ(r, t)ε(r, t)dr = −
∫

(ρε + p)v · dS. (219)

The first equation simply says that the momentum within the volume changes due to the force that the rest of the
fluid exerts on this volume. The second equation says that the energy inside the volume changes due to the power of
the force and due to the fluid flux out of the volume, that carries the energy away convectively. In principle, in the
momentum equation the convective flux term should be present also, but the term is quadratic in v and it should be
discarded within the frame of our consideration.

A more formal argument for the validity of Eq. (221) is based on the Galilean invariance that holds for the considered
non-relativistic motions. The local nature of the expressions for the currents and their independence of the spatial
derivatives of the fields allows to conclude that the same expressions would hold for a fluid occupying infinite space
and moving at a speed v. Then Galilean invariance allows to fix the form of the tensors based on the realization that
in the frame where the fluid is at rest we have no macroscopic flux of energy, j0,E = 0, while the inner stresses in the
fluid are described by τ0

ij = pδij (here the superscript 0 stands for the rest frame). The latter formula expresses that
the only possible form of τij that would not produce infinite accelerations in the fluid is where τij is proportional to
the unit tensor with pressure as the proportionality coefficient (Pascal’s law). Then the expressions for τij and jE in
the laboratory frame are obtained from the laws of transformations of these tensors under Galilean transformation

τij = τ0
ij + vig

0
j + vjg

0
i + vivjρ

0, jE
i = j0

i + vj [τ0
ij + ρ0ε0δij ] + vivjg

0
j +

1
2
v2(g0

i + viρ
0]. (220)

The above laws together with g0 = 0 allow to derive Eq. (221) up to the terms quadratic terms in v that should be
discarded. The proof of the above laws of transformation is left for the exercise.

What is the physics described by the considered, lowest order approximation of the dynamics? To see this let
us consider the resulting dynamics. We note that to the lowest non-vanishing order in the small amplitude of the
perturbations we must set ρv ≈ ρ0v and j ≈ (ρ0ε0 + p0)v because v is small. Here the subscript 0 stand for the
equilibrium values of the considered quantities. The resulting equations read

∂δρ

∂t
= −ρ0∇ · v, ρ0

∂v

∂t
= −∇p, ρ0

∂ε

∂t
+ ε0

∂ρ

∂t
= −(ρ0ε0 + p0)∇ · v, (221)

where δρ ≡ ρ− ρ0. The above equations are linearized equations of the so-called ideal hydrodynamics. To realize the
meaning of the equations above we use the thermodynamic relation dε = Tds− pdV = Tds + pdρ/ρ2 for unit mass of
the fluid, where V = 1/ρ and s is the entropy per unit mass. This relation gives

ρT
∂s

∂t
= ρ

∂ε

∂t
− p

ρ

∂ρ

∂t
= −(ρ0ε0 + p0)∇ · v − ε0

∂ρ

∂t
− p0

ρ0

∂ρ

∂t
= −(ρ0ε0 + p0)∇ · v + (ρ0ε0 + p0)∇ · v = 0. (222)

Thus the entropy per unit mass is conserved in the considered approximation! Naturally created perturbations (i. e.
mechanical perturbations not involving transfer of heat to the fluid) in this approximation do not change the entropy
density that remains uniform throughout the fluid. Let us stress that the entropy per unit volume, given by ρs is not
uniform. For example if perturbation replaces mechanically part of the fluid to another place, this does not change
the entropy per unit mass but it does change the entropy per unit volume. Thus within this approximation, normally
one has s = const which leads to

∇p =
(

∂p

∂ρ

)

s

∇δρ. (223)

The above relation allows to close the first two equations in Eq. (221). Differentiating the equation on density over
time, one finds that δρ satisfies the wave equation

∂2δρ

∂t2
= ∇2p =

(
∂p

∂ρ

)

s

∇2δρ, (224)

describing propagation of waves at speed

cs =

√(
∂p

∂ρ

)

s

. (225)
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The same wave equation is satisfied by the pressure so that the above waves can also be seen as waves of pressure and
they are nothing but the sound waves in the fluid. The resulting behavior of ρ and v is not relaxation to equilibrium
but rather oscillating behavior corresponding to sound.

It is important to be aware of the meaning of the difference of the above expression for cs from the expression derived
by Newton. Newton considered sound as an essentially mechanistic phenomenon, assuming that sound propagates
at a constant temperature in the fluid which gives c2

s = (∂p/∂ρ)T . Laplace corrected this result by noting that it is
the transfer of heat that does not have enough time to occur during the wave propagation rather than the exchange
of temperature. As a result of this difference it seems very hard (if not impossible) to derive a mechanical model for
sound that would produce the correct propagation speed.

Thus in the considered order of the expansion in k, the equations are not dissipative. In other words, the first
order terms in the Taylor expansion of λij(k) at k = 0 give zero contribution into the decay rates of perturbations.
The leading order at small k contribution to the decay rates comes only from the second order terms in the Taylor
expansion, to the study of which we pass now.

B. Linearized equations of hydrodynamics to second order in derivatives. Normal relaxation modes in a
fluid.

We consider the equations that correspond to keeping in the Taylor expansion of λij(k) the terms which are quadratic
in k that is we consider the approximation λij(k) ≈ Cijlkl + Mijmnkmkn/2, where Mijmn = ∂m∂nλij(k = 0). Again
it is more convenient to consider the equations in the real space. In this order the equations correspond to adding to
Eqs. (221) for τij and jE some additional terms linear in the derivatives of the fields. Gradients of thermodynamic
variables do not produce a macroscopic flux of momentum (for example steady states of fluids with imposed gradients
of temperature do not involve a macroscopic flow) so the additional contribution to τij contains only the gradients of
velocity. This contribution describes the friction force between the nearby layers of the fluid at relative motion. The
most general form allowed by the isotropy, the parity and the symmetry of τij is

τij = pδij − η

[
∂vi

∂xj
+

∂vj

∂xi
− 2

3
δij∇ · v

]
− ζδij∇ · v, (226)

where the traceless part of the tensor of velocity derivatives has been singled out as the η−term. The coefficients η
and ζ are called shear and bulk viscosities respectively. The corresponding addition to the energy flux is

jE = (ρε + p)v − κ∇T, (227)

where the additional contribution describes the heat flux and it corresponds to the so-called Fick’s law. The coefficient
κ is called the heat conductivity. The term containing ∇p, that could in principle be added to jE , can be shown to
be forbidden by the Onsager symmetry relation. We obtain the following system of the so-called linearized equations
of hydrodynamics:

∂ρ

∂t
= −ρ0∇ · v, ρ0

∂v

∂t
= −∇p + η∇2v +

(η

3
+ ζ

)
∇(∇ · v), ρ0

∂ε

∂t
+ ε0

∂ρ

∂t
= −(ρ0ε0 + p0)∇ · v + κ∇2T.(228)

Note that in general η, ζ and κ are functions of the local thermodynamic variables but in the considered order
of approximation they can be substituted by their constant value in equilibrium. With the addition of the second
derivative terms into the equations, the entropy is no longer conserved - Eq. (222) is modified to

ρ0T0
∂s

∂t
= κ∇2T. (229)

As a result, there is dissipation and the equations (228) describe relaxation to equilibrium. For the analysis it is
convenient to choose s and p as two independent thermodynamic variables. The equations (228) become

(
∂ρ

∂s

)

p

∂s

∂t
+

(
∂ρ

∂p

)

s

∂p

∂t
= −ρ0∇ · v, ρ0

∂v

∂t
= −∇p + η∇2v +

(η

3
+ ζ

)
∇(∇ · v),

ρ0T0
∂s

∂t
= κ

(
∂T

∂s

)

p

∇2s + κ

(
∂T

∂p

)

s

∇2p. (230)

We look for the normal modes of the above system in the standard form

P (r, t) = P (k, ω)ei(k·r−ωt), s(r, t) = s(k, ω)ei(k·r−ωt), v(r, t) = v(k, ω)ei(k·r−ωt). (231)
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The amplitudes obey the system of equations

ω

(
∂ρ

∂s

)

p

s(k, ω) + ω

(
∂ρ

∂p

)

s

p(k, ω)− ρ0k · v(k, ω) = 0, ρ0ωv(k, ω)− kp(k, ω) = −ik2ηv(k, ω)− i
(η

3
+ ζ

)

×k[k · v(k, ω)], ρ0T0ωs(k, ω) = −iκ

(
∂T

∂s

)

p

k2s(k, ω)− iκ

(
∂T

∂p

)

s

k2p(k, ω). (232)

A remarkable property of the system above is that the transversal component of velocity vt(k, ω) decouples. The
transversal component is defined by decomposing v(k, ω) into a sum of a longitudinal component along k and a
transversal component perpendicular to k,

v(k, ω) = vl(k, ω) + vt(k, ω), k × vl(k, ω) = 0, k · vt(k, ω) = 0. (233)

Then the system (232) gives

(ρ0ω + ik2η)vt(k, ω) = 0. (234)

It follows that the dispersion relation for the transversal velocity modes (also called shear modes) is ω = −iηk2/ρ0.
There are two such modes that correspond to two possible directions of polarization. Putting the expression for ω
into the definition provided by Eq. (231) we see that the perturbations of the transversal velocity decay diffusively
with the diffusion coefficient proportional to η. Below we will use this to derive the Kubo formula for the viscosity
coefficient.

The equations on s, p and vl form a coupled system of three equations,

ω

(
∂ρ

∂s

)

p

s(k, ω) + ω

(
∂ρ

∂p

)

s

p(k, ω)− ρ0kvl(k, ω) = 0, −kp(k, ω) +
[
ρ0ω + ik2

(
4η

3
+ ζ

)]
vl(k, ω) = 0,

[
ω + ik2 κ

ρ0T0

(
∂T

∂s

)

p

]
s(k, ω) + ik2 κ

ρ0T0

(
∂T

∂p

)

s

p(k, ω) = 0. (235)

The system has the form Mij(k, ω)xj = 0 where x = [ρ(k, ω), vl(k, ω), p(k, ω)]. The dispersion relation ω = ω(k) is
fixed by the demand that the system has non-trivial solutions, that is det M(k, ω) = 0. The explicit form of the last
condition is

[
ω2 − k2

(
∂p

∂ρ

)

s

+ i
ωk2

ρ0

(
4η

3
+ ζ

)] [
ω + ik2 κ

ρ0T0

(
∂T

∂s

)

p

]
− iωk2 κ

ρ0T0

(
∂T

∂p

)

s

(
∂ρ

∂s

)

p

(
∂p

∂ρ

)

s

×
[
ω + i

k2

ρ0

(
4η

3
+ ζ

)]
= 0. (236)

Using the definitions cp = T0(∂s/∂T )p and cp = T0(∂s/∂T )ρ, where cp and cv are the heat capacities per particle,
and the identity

(
∂T

∂p

)

s

(
∂ρ

∂s

)

p

(
∂p

∂ρ

)

s

=
(

∂T

∂s

)

p

−
(

∂T

∂s

)

ρ

= −T0

(
1
cv
− 1

cp

)
, (237)

we may rewrite Eq. (236) as
(

ω + ik2 κ

ρ0cp

) [
ω2 − k2c2

s + iω
k2

ρ0

(
4η

3
+ ζ + κ

[
1
cv
− 1

cp

])]
− ωk4κ

ρ0

(
1
cv
− 1

cp

)(
4η

3
+ ζ − κ

cp

)
= 0, (238)

where cs is the speed of sound as defined by Eq. (225). The dispersion relation ω = ω(k) obtained from the equation
above can only be correct up to the terms of order k2 - a meaningful answer for higher order terms would demand
the account of higher order terms in λij(k) in the original system of the equations. Solving Eq. (238) to order k2 we
find three solutions,

ω1(k) = −i
κk2

ρ0cp
, ω±(k) = ±csk − iΓk2, (239)
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where the sound absorption coefficient Γ is defined by

Γ =
1

2ρ0

(
4η

3
+ ζ + κ

[
1
cv
− 1

cp

])
. (240)

The mode corresponding to ω1 is a purely diffusive mode. Considering the corresponding eigenvector one finds that
its components satisfy the following scaling in k,

s[k, ω1(k)] ∝ 1, vl[k, ω1(k)] ∝ k, p[k, ω1(k)] ∝ k2. (241)

Since we work in the regime of small k it follows that this mode is composed predominantly of the fluctuations of
entropy which decay exponentially like in diffusion. This mode corresponds to the propagation of heat and it is
sometimes called the heat mode or the entropy mode. The eigenvector that corresponds to ω± satisfies the following
scaling

vl[k, ω1(k)] ∝ p[k, ω1(k)] ∝ 1, s[k, ω1(k)] ∝ k. (242)

Thus these modes correspond predominantly to a pressure wave. These are longitudinal sound waves with real part
of ω±(k) describing the wave propagation in the two possible directions and the imaginary part of ω±(k) describing
slow exponential decay of the amplitude of the propagating wave (the slowness is a consequence of |Im ω±(k)| ¿
|Re ω±(k)|).

Thus in the hydrodynamic regime there are five channels of relaxation in normal fluids that correspond to two shear
modes, two sound modes and one heat mode.

C. Calculation of the dynamical structure factor

To be introduced

D. The Kubo formula for viscosity

We have seen in the example of the spin diffusion that one can derive the Kubo formula for the diffusion coefficient
by representing the latter in terms of the spectrum of fluctuations of magnetization and then reexpressing the result
in terms of the spectrum of the fluctuations of the current. Diffusion coefficient describes dissipation of perturbations
so that the obtained expression is an example of the fluctuation-dissipation theorem. In fluids there are 3 coefficients
that describe dissipation: shear viscosity η determines the decay of the shear modes, heat conductivity κ determines
the decay of the heat mode and Γ determines the decay of sound modes. Equivalently, one can say that η, κ and ζ
are dissipation coefficients, and expect that a corresponding Kubo formula holds for them. Here we give the formula
for η which derivation is somewhat simpler. Taking the curl of the velocity equation in Eqs. (228) we have

ρ0
∂ω

∂t
= η∇2ω, (243)

where ω ≡ ∇ × v is the so-called vorticity field. Vorticity is very important in non-linear hydrodynamics and its
dynamics plays crucial role in such ill-understood phenomena as tornados. Within the linearized hydrodynamics,
however, vorticity obeys a simple diffusion equation with diffusion coefficient determined by the shear viscosity. Thus
we may derive the Kubo formula for η following exactly the same lines as we did for the spin diffusion coefficient. For
the derivation it is more convenient not to use the vorticity but rather the transversal component of velocity. Taking
Fourier transform of the velocity equation in Eqs. (228) we find

ρ0
∂v(k, t)

∂t
= −ikp(k, t)− ηk2v(k, t)−

(η

3
+ ζ

)
k [k · v(k, t)] (244)

The above equation holds for any k. Let us choose k in x−direction, k = kx̂, and consider the y component of the
equation. We find

ρ0
∂vy(kx̂, t)

∂t
= −ηk2vy(kx̂, t). (245)
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The above equation expresses the decoupling of the transversal component of velocity which obeys simple diffusion
equation. Using the Onsager hypothesis we may write immediately that

〈vy(kx̂, t)vy(−kx̂, 0)〉 = 〈vy(kx̂, 0)vy(−kx̂, 0)〉 exp
[
−ηk2|t|

ρ0

]
. (246)

It follows that the function S(k, ω) defined by

S(k, ω) =
∫

eiωt〈vy(kx̂, t)vy(−kx̂, 0)〉dt, (247)

is given by

S(k, ω) = 〈vy(kx̂, 0)vy(−kx̂, 0)〉 2(ηk2/ρ0)
(ηk2/ρ0)2 + ω2

. (248)

Next we note that the y− component of the momentum conservation equation, which to lowest order reads ρ0∂tvy =
−∂jτyj , gives after Fourier transform over both space and time that

τyx(kx̂, ω) = −ρ0ωvy(kx̂, ω)
k

, (249)

where for the wavenumber we set k = kx̂. Using the above equation, we find that S̃(k, ω) defined by

S̃(k, ω) =
∫

eiωt〈τyx(kx̂, t)τyx(−kx̂, 0)〉dt, (250)

obeys

S̃(k, ω) =
ρ2
0ω

2

k2
S(k, ω) = 〈vy(kx̂, 0)vy(−kx̂, 0)〉 2ηρ0ω

2

(ηk2/ρ0)2 + ω2
. (251)

where we used Eq. (248). The above equation implies that

lim
ω→0

lim
k→0

S̃(k, ω) = 2ηρ0 lim
k→0

〈vy(kx̂, 0)vy(−kx̂, 0)〉. (252)

Using the definition (250) and Eq. (213) we have from the above equation that

2ηρ0 lim
k→0

〈vy(kx̂, 0)vy(−kx̂, 0)〉 = lim
ω→0

lim
k→0

V

∫
dtdreiωt−ikx〈τyx(r, t)τyx(0, 0)〉. (253)

We now calculate limk→0〈vy(kx̂)vy(−kx̂)〉. We have

lim
k→0

〈vy(kx̂)vy(−kx̂)〉 = lim
k→0

∫
drdr′ exp[−ik(x− x′)]〈vy(x)vy(x′)〉 = V

∫
〈vy(r)vy(0)〉dr. (254)

To fix the last integral we consider a macroscopic subsystem of the fluid which is much smaller than the whole system.
We choose the subsystem size L to be much larger than the correlation length of velocity lcor (so that 〈vy(r)vy(0)〉 is
negligible at r À lcor) and designate the subsystem volume by Ω. We now ask what is the probability distribution of
the center of mass velocity V of the considered volume. Neglecting the energy of interaction of the subsystem with
its exterior (which means neglecting surface effects against the volume ones) we have that the fluid energy is the sum
of the energies of the subsystem and its environment. Representing the former energy as the sum of the center of
mass energy and the internal energy we find that the distribution of V is determined by the Boltzmann factor,

P (V ) ∝ exp
[
−MV 2

2kBT

]
, (255)

where M = ρ0Ω is the mass of the subsystem. Here one needs not account for the fluctuations of M in the leading
order of consideration of small fluctuations. Note that the above formula is valid also within the frame of the quantum
mechanical consideration as center of mass is a quasi-classical variable. It follows from the above that

〈V 2〉 =
3kBT

M
=

3kBT

ρ0Ω
. (256)
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On the other hand we may represent the above average with the help of the velocity field as

〈V 2〉 = 〈
[∫

Ω

dr

Ω
v(r)

]2

〉 =
1

Ω2

∫
drdr′〈vi(r)vi(r′)〉 ≈ 1

Ω

∫
〈vi(r)vi(0)dr, (257)

where in the last equation we used L À lcor. Comparing the last two equations we find
∫
〈vi(r)vi(0)dr =

3kBT

ρ0
. (258)

Since by isotropy all three components of vi give equal contribution into the above equation, we obtain
∫
〈vy(r)vy(0)dr =

kBT

ρ0
, lim

k→0
〈vy(kx̂)vy(−kx̂)〉 =

kBTV

ρ0
. (259)

Putting the above into Eq. (253) we find

η = lim
ω→0

lim
k→0

1
2kBT

∫
dtdreiωt−ikx〈τyx(r, t)τyx(0, 0)〉. (260)

Finally, performing the symmetrization of the current like we did in the analysis of the spin diffusion coefficient we
find the Kubo formula for viscosity

η = lim
ω→0

lim
k→0

1
4kBT

∫
dtdreiωt−ikx〈[τyx(r, t), τyx(0, 0)]s〉. (261)

The above formula is used a lot today as it turned out that the shear viscosity η is a rather basic object to calculate
in quantum field theories with gravity duals (i. e. theories allowing isomorphism to a certain theory of spacetime).

It is possible to derive Kubo formulas for κ and ζ as well. Here we bring the formula for ζ. Both η and ζ describe
the transport of momentum and the general formula reads

η

(
δij +

1
3

kikj

k2

)
+ ζ

kikj

k2
== lim

ω→0
lim
k→0

1
4kBT

∫
dtdreiωt−ik·r ∑

m,n

kmkn

k2
〈[τim(r, t), τjn(0, 0)]s〉. (262)

The result (261) is obtained by putting in the above equation k = kx̂ and i = j = y.

VII. NON-LINEAR LANGEVIN EQUATION AND FOKKER-PLANCK EQUATION

Today’s understanding of complex, macroscopic systems has a clear dichotomy into near equilibrium and far from
equilibrium situations. In equilibrium, considered systems find themsleves in a statistically steady state described by
a known probability distribution function. The problem of predicting the properties of a system in equilibrium is then
facilitated (though by no means solved) by the knowledge of the distribution. Near equilibrium situations allow similar
simplifications. In sharp contrast, understanding of systems far from equilibrium, which includes an important class
of open, living systems, is very modest. An important class of situations where one can anticipate some advancement
in understanding are non-equilibrium steady states. Here the probability distribution is not known and there are no
general principles allowing to fix it. Often one resorts to modeling the system by some effective dynamics...

The general Langevin equation on an n−dimensional vector xi(t) reads

dxi

dt
= hi(x(t), t) + gij(x(t), t)Γj(t), (263)

where the Gaussian noise Γi(t) is determined by 〈Γ〉 = 0 and 〈Γi(t)Γj(t′)〉 = 2δijδ(t− t′). Let us stress that xi above
can have any meaning and though we use the same notation as for the spatial coordinate, it must be clear from the
context, which one is meant (for example xi above may well represent the velocity v of a Brownian particle).

It is natural to try to think of the equation (263) by seeing the evolution of x as composed of local drift caused by
h and the local diffusion described by gij . This separation however is not precisely true. The equation (263) involves
a singular term Γ(t) and as such it determines the evolution of x(t) incompletely - one has to supply a regularization
that explains how to understand Γ(t) in the case where there is an ambiguity. To explain the problem, let us average
Eq. (263) to obtain the equation on the evolution of the first moment of x(t),

d〈xi〉
dt

= 〈hi(x(t), t)〉+ 〈gij(x(t), t)Γj(t)〉. (264)
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It is tempting to put the last term equal to zero. In fact, this would be wrong generally. Consider Γ(t) within the
framework of the so-called physical regularization, where it is recognized that in reality all processes have a finite
correlation time and the Langevin equation is an effective description of the situation where the correlation time of Γ
is much less than all other characteristic times in the problem. Then gij(x(t), t) is determined by Γ(t′) with t′ < t and
it is correlated with Γ(t) because Γ(t′) with t′ < t are correlated with it. As a result, within the physical regularization
〈gij(x(t), t)Γj(t)〉 6= 0 and the diffusion leads to the variable drift additional to the one caused by h. We will find this
additional drift below.

Other popular ways of regularization used in the so-called stochastic calculus are Ito and Stratanovich ones. In
particular, in the former one 〈gij(x(t), t)Γj(t)〉 = 0. The distinction between different ways of regularization is not
important for the linear Langevin equation.

The non-linear Langevin equation is an example of the so-called Markov process. Markovian property is an impor-
tant notion that appears in many applications, so it will be considered separately.

A. Markov processes

Probably the main property of Markov processes that makes them an important model is that they can be described
as evolution, that is knowledge of statistics at any moment of time allows in principle to discuss the calculation of
the statistics at later moments of time, without referring to the history of the process. A simplest example of such
evolution problem is provided by the Fokker-Planck equation.

B. The Fokker-Planck equation

For non-linear Langevin equation (263) one can derive an explicit closed equation describing the evolution of
probability densities in time. The equation is called the Fokker-Planck equation after the two people who first
derived, independently, the equation on the distribution function for the Brownian motion.

∂P

∂t
= − ∂

∂xi
[Di(x, t)P (x, t)] +

∂2

∂xi∂xj
[Dij(x, t)P (x, t)] , (265)

where the so-called drift coefficient Di(x, t) and the diffusion matrix Dij(x, t) are defined by

Di(x, t) = hi(x, t) + gmj(x, t)
∂gij(x, t)

∂xm
, Dij(x, t) = gim(x, t)gjm(x, t). (266)

Note that the real eigenvalues of Dij are never negative. They are strictly positive at points x where the matrix
gij(x, t) is not degenerate. In the one-dimensional case the diffusion coefficient is simply g2(x, t).

It should be stressed that while the non-linear Langevin equation (263) contains ambiguity demanding for the
completion of the definition, the PDF P (x, t) entering the Fokker-Planck equation is already a perfectly well-defined
object. In particular, to pass from Langevin equation in one regularization to its counterpart in another representation
one can compare the Fokker-Planck equations resulting in these representations. From now on we shall confine
ourselves to the case of stationary Langevin dynamics, where the functions hi and gij in Eq. (263) do not depend on
time explicitly hi = hi(x), gij = gij(x). Let us consider some simple examples of the use of Eq. (265).

C. Some examples of the use of the Fokker-Planck equation

Brownian motion, FDT, Brownian motion in external potential
Now let us consider the equation of the Brownian motion including the coordinate into consideration,

dx

dt
= v,

dv

dt
= −v

τ
+ CΓ, (267)

where C is determined from the FDT. The above equation is a Langevin of the general type (263) and we may write
a Fokker-Planck equation for the PDF P (x,v, t). We find

∂P

∂t
+ v∇xP =

∂

∂vi

[
vi

τ
+

kBT

Mτ

∂

∂vi

]
P. (268)
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We know that at times much larger than the correlation time τ of the velocity, the marginal distribution P (x, t) =∫
P (x, v, t)dv, giving the PDF of x(t) must obey a simple diffusion equation. If we now integrate Eq. (268) over v

we find that P (x, t) satisfies

∂P (x, t)
∂t

= − ∂

∂xi
〈vi〉x, (269)

where 〈vi〉x =
∫

viP (v,x, t)dv is the ”current” of x. At t À τ one can show that 〈vi〉x obeys the ”constitutive
relation” 〈vi〉x = −D∇P leading to the diffusion equation ∂tP = D∇2P for P (x, t). To show the relation one can
instead of taking the limit of large t at fixed τ , take the limit of small τ at fixed t. In this limit, one can drop dv/dt
term in the second of Eqs. (267) which leads to ẋi = τΓi producing the diffusion equation on P (x, t).

D. Some general properties of the Fokker-Planck equation

The Fokker-Planck equation has the form of a local conservation law

∂P

∂t
+∇ · S = 0, (270)

where the probability current S is defined by

Si = DiP − ∂

∂xj
[DijP ] . (271)

If the normal component of S vanishes at a boundary of some volume V then the probability
∫

V
P (x, t)dx for x to

be inside V is conserved. In particular, for the so-called natural boundary conditions, where the PDF and thus also
the current vanish at infinity, the normalization of probability

∫
P (x, t)dx is conserved in time. Consider now the

evolution of the first moment of x(t),

d

dt
〈xi(t)〉 =

∂

∂t

∫
xiP (x, t)dx =

∫
dxxi

[
− ∂

∂xj
(DjP ) +

∂2

∂xi∂xj
DijP

]
. (272)

Assuming natural boundary conditions one can integrate by parts which leads to

d

dt
〈xi(t)〉 =

∫
Di(x)P (x, t)dx = 〈hi[x(t)]〉+

〈
gmj [x(t)]

∂gij [x(t)]
∂xm

〉
, (273)

where we used the expression (266) for Di. The above expression provides the explicit answer for the contact term in
Eq. (??).

The Fokker-Planck equation is a linear equation so that the solution of the initial value problem can be written as

P (x, t) =
∫

P (x, x′, t)P (x′, t)dx′, (274)

where the Green function P (x,x′, t) is defined as the solution of

∂P (x,x′, t)
∂t

= − ∂

∂xi
[Di(x, t)P (x,x′, t)] +

∂2

∂xi∂xj
[Dij(x, t)P (x, x′, t)] , P (x, x′, 0) = δ(x− x′). (275)

The distinguishing property of the Green function of the Fokker-Planck equation is that it is also the probability
of the transition of the random process x(t) from x′ to x in time t. In particular, if the diffusion matrix Dij(x) is
non-degenerate everywhere then one can see that P (x,x′, t) is positive as one expects from the probability, see the
section on the path integral representation of the solution.

E. The meaning of the drift coefficient and the diffusion matrix

To understand the meaning of the drift coefficient Di and the diffusion matrix Dij let us first consider the Fokker-
Planck equation in the case where Di and Dij are constant,

∂P

∂t
= −Di

∂P

xi
+ Dij

∂2P

∂xi∂xj
. (276)
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To find the Green function one notices that the above equation corresponds to the Langevin dynamics

dxi

dt
= Di + gijΓj(t), gijgkj = Dij , 〈Γ〉 = 0, 〈Γi(t)Γj(t′)〉 = 2δijδ(t− t′). (277)

It follows from Gaussianity of Γ that x−x(0)−Dt =
∫ t

0
gijΓj(t) is a Gaussian variable. This variable has zero mean

and the pair correlation function

〈[x− x(t = 0)−Dt]i[x− x(t = 0)−Dt]j〉 = gikgjl

∫ t

0

Γk(t1)Γl(t2) = 2gikgjkt = 2Dijt, (278)

where we used Eq. (277). Thus under the condition x(0) = x′ the random variable x(t) is Gaussian with the mean
〈xi(t)〉 = x′i and the dispersion 〈〈xi(t)xj(t)〉〉 = 2Dijt. The corresponding PDF of x(t), representing nothing but the
Green function P (x, x′, t) of Eq. (276), is given by

P (x,x′, t) =
1

(4πt)n/2
√

det D
exp

[
− [x− x′ −Dt]i[x− x′ −Dt]j

4t
D−1

ij

]
. (279)

The usefulness of the solution above is that it allows to see the form of the solution of the general Fokker-Planck
equation for small times τ . To see this consider the evolution of P (x, x′, τ) from its initial value δ(x− x′).

This is why the Fokker-Planck equation is sometimes called a generalized diffusion equation.

F. The functional integral representation of the solution

G. One-dimensional Fokker-Planck equation

The Fokker-Planck equation in one dimension,

∂P

∂t
= −∂(D1P )

∂x
+

∂2P

∂x2
, (280)

has special properties that allow to reach much understanding of the solution. F

H. Passage from the Schrodinger to the Fokker-Planck equation. Nelson formulation of the quantum
mechanics.

We consider a quantum system consisting of N particles. Forming a 3N−dimensional vector x = (x1, x2, .., xN )
the Hamiltonian operator can be written as

Ĥ = − ~
2

2m
∇2

x + U(x), (281)

where U(x) is the potential energy. The imaginary time Schrodinger equation is

−∂ψ

∂t
= Ĥψ. (282)

We assume that the Hamiltonian is bounded from below and designate the energy and the wavefunction of the ground
state by E0 and ψ0 respectively,

− (283)

the zero of energy is chosen so that the ground state
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I. Covariant formulation of the Fokker-Planck equation and passage to a constant diffusion coefficient

The problem of finding a solution to Hamiltonian dynamics is to large extent the problem of finding the correct
coordinates to describe the problem. In classical mechanics these are action-angle coordinates, in quantum mechanics
we look for coordinates in Hilbert space in which the Hamiltonian operator is diagonal. Analogously one may search
for the best coordinates to describe the Langevin dynamics (263). In one-dimensional case, one can always pass
to coordinates in the ”phase space” where the diffusion coefficient becomes an arbitrary, coordinate independent
constant. The qualitative arguments is simple” dividing Eq. (263) by g we get

1
g(x)

dx

dt
=

h(x)
g(x)

+ Γ. (284)

Assuming that the diffusion is not degenerate so that D(x) = g2(x) is everywhere positive, we may pass to a new
variable y(x) obeying y′(x) = 1/g(x) and the above equation takes the form

dy

dt
=

h[x(y)]
g[x(y)]

+ Γ. (285)

The Fokker-Planck equation satisfied by y already corresponds to the constant diffusion coefficient equal to one, which
is seemingly given by

∂P (y, t)
∂t

+
∂

∂y

[
h[x(y)]
g[x(y)]

P (y, t)
]

+
∂2P (y, t)

∂y2
. (286)

Now the above derivation is correct only qualitatively, but not quantitatively. The reason is that Eq. (263) is a
stochastic differential equation and, as we mentioned, its complete definition involves also a regularization prescription.
As a result the procedure of naive division of the equation is not correct - Eq. (285) is already not sensitive to the
regularization, so necessarily we missed something on the way. To find the correct form of the Fokker-Planck equation
on P (y, t) we recall that the PDF P (x, t) appearing in the Fokker-Planck equation is a perfectly well-defined object.
Then the equation on Py(y, t) with y′ = 1/g can be obtained from the law of transformation of probability densities,
P (x)dx = Py(y)dy or P (x, t) = Py[y(x), t]/g(x) and the Fokker-Planck equation on P (x, t). We find

It follows that the naive division procedure miscalculates the drift. The correct Langevin equation on y, corre-
sponding to the Fokker-Planck equation above reads

Let us now ask whether oin the general d−dimensional case one can also choose coordinates so that the diffusion
matrix simplifies to a constant one. Trying to apply the naive division argument, one fails: the division by g, here
meaning the multiplication of Eq. (263) by the inverse matrix g−1, produces

g−1
ij

dxj

dt
= g−1

ij hj + Γi. (287)

Now generally it is not possible to represent the LHS as a time-derivative of some vector function y[x]:

dyi[x(t)]
dt

=
∂yi

∂xj

dxj

dt
, (288)

and the demand that the LHS of Eq. (??) can be written dyi/dt leads to the equation

∂yi

∂xj
= g−1

ij . (289)

It follows from the symmetry of the matrix of second derivatives of y that only if

∂g−1
ij

∂xk
=

g−1
ik

∂xj
. (290)

is satisfied then one can expect the equality (289). The above equation is in fact also sufficient for the solvability
of Eq. (289). Now in general the above condition is not satisfied and we should not expect a transformation to an
equation with a constant diffusion matrix to be possible. Now, because our argument above is based on the incorrect
procedure of naive multiplication of the original Eq. (263) by g−1, then we should consider the above as merely a way
to see cheaply what is to be expected. The correct way to deal with the question of when we can pass to a constant
diffusion matrix by changing the coordinates involves the so-called covariant form of the Fokker-Planck equation.

INTRODUCE THE FOKKER-PLANCK OPERATOR
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J. Covariant form of the Fokker-Planck equation

K. Connection between the Fokker-Planck and Schrodinger equations

We already mentioned that there is a close connection between Let us consider S

L. Nelson’s formulation of quantum mechanics

The summit of the connection between the Fokker-Planck and Schrodinger equations is Nelson’s formulation of
quantum mechanics. Within this formulation the averages resulting from quantum evolution are given an equivalent
representation in terms of a stochastic process. Note that effective stochasticity appears already in the classical
mechanics and it does not demand quantum-mechanical notions. This led Nelson, who discovered the new formulation
in 1966 to write that if quantum mechanics was discovered in this language the history of conceptual foundations of
modern physics would be different. Indeed, the new formulation tries to explain the results of experiments traditionally
explained with the help of quantum mechanics in classical terms.

The possibility to pass from the Schrodinger equation to the Fokker-Planck equation of a particular form, that was
described above, means that mathematic

We provide the Nelson formulation for quantum mechanics of a single particle in one dimension. We use units
where ~ and particle mass are equal to one. The Green function of the Schrodinger equation can be represented as a
path integral,

G(x, x′, t) =
∫ w(t)=x

w(0)=x′
Dw exp (iS[w]) , S[w] =

∫ t

0

(
ẇ2

2
− V [w]

)
, (291)

where w(t) is the particle coordinate and V (w) is the potential. Considering imaginary time continuation of the above
quantity, one finds that exp(iS[w]) becomes exp(−S[w]) and the resulting equation starts to have a form of averaging
over different trajectories with trajectory probability weight given by exp(−S[w]). It becomes natural to consider
”statistical moments”

〈w(t1)..w(tn)〉 ≡
∫

Dww(t1)..w(tn) exp(−S[w])∫
Dw exp(−S[w])

. (292)

Assuming the ordering tk > tk−1 one can express the above average in terms of quantum mechanical expectation
value as,

〈w(t1)..w(tn)〉 =< ψ0|q̂ exp[−(t2 − t1)H]q̂.. exp[−(tn − tn−1)H]q̂|ψ0 >, (293)

where q̂ is the position operator, H is the Hamiltonian and |ψ0 > is the ground state wave function.

M. The entropy growth (H-theorem) for the Fokker-Planck equation

The second law of thermodynamics states that one can associate with a closed system an entropy function. The
function grows as the system relaxes to equilibrium and attains its maximum in the equilibrium state. On the other
hand, the Fokker-Planck equation, at least near equilibrium, describes correctly the relaxation dynamics of slow
variables. Therefore it is natural to ask if the second law allows an explicit formulation within the frame of the
equation. Such formulation does exist and it is called H-theorem after the first theorem of the kind that appeared
in the context of the Boltzmann equation and will be considered later. Here the theorem is due to Lebowitz and
Bergmann and Graham.

One considers two different solutions of the Fokker-Planck equation, W1 and W2, satisfying

∂tW1 +∇ · (DW1) = ∂i(Dij∂jW1), ∂tW2 +∇ · (DW2) = ∂i(Dij∂jW2) (294)

It is assumed that the solutions may represent physical probability density functions that is they are non-negative
and normalized,

∫
Wi(x, t)dx = 1. One defines ”entropy” by

S(t) = −
∫

W1 ln
W1

W2
dx = −

∫
[W1 ln W1 −W1 ln W2] dx. (295)
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As we shall see the above definition produces a natural generalization for the entropy. Let us note that S is a
non-positive function. Using

∫
Wi(x, t)dx = 1 we may rewrite S as

S = −
∫ [

W1 ln
W1

W2
−W1 + W2

]
dx = −

∫
W2 [R ln R−R + 1] dx, (296)

where we introduced R ≡ W1/W2. The last term in the above equation is always not positive as it follows from

R ln R−R + 1 =
∫ R

1

ln xdx ≥ 0, (297)

holding for any R ≥ 0. Next we consider Ṡ:

Ṡ =
∫ [

ln
W1

W2
∇ · (DW1)− W1

W2
∇ · (DW2)

]
dx−

∫ [
ln

W1

W2
∂i(Dij∂jW1)− W1

W2
∂i(Dij∂jW2)

]
dx, (298)

where we separated the derivative into the contribution of current and diffusion terms and used
∫

Ẇ1(x, t)dx = 0.
Making the assumption that integration by parts is allowed (which here means that the current D is non-singular
and it does not lead to run-away solutions of the ”noiseless” Langevin equation ẋ = D[x(t)]), one finds that the
contribution of the current terms vanishes. For the contribution of the diffusion term the integration by parts gives

Ṡ =
∫ [

Dij
∂W1

∂xj

∂

∂xi

(
ln

W1

W2

)
−Dij

∂W2

∂xj

∂

∂xi

(
W1

W2

)]
dx =

∫
Dij

∂

∂xi

(
ln

W1

W2

)[
∂W1

∂xj
− W1

W2

∂W2

∂xj

]
. (299)

Introducing ξ ≡ ln(W1/W2) and assuming that the diffusion matrix is positive definite we find

Ṡ =
∫

W1Dij
∂ξ

∂xi

∂ξ

∂xj
≥ 0, (300)

where we equality occurs only if W1 = W2 (assuming W1 > 0 everywhere). Note that in the above analysis the current
D and the diffusion matrix Dij may be the functions of both coordinate and time.

The integral in Eq. (300) determines a kind of a ”distance” between W1 and W2 : it is always non-negative and
it vanishes only if W1 = W2. Thus as long as W1 6= W2, the entropy will grow. Since the entropy is bounded from
above by zero, then, assuming S(0) is finite, it is not possible that the distance between W1 and W2 remains above
an arbitrary small ε > 0 indefinitely. This implies that under the assumptions allowing the integration by parts in
the above derivation, any two solutions of the Fokker-Planck equation will tend to agree at large times. In particular,
if there is a stationary, normalizable solution Pst of the Fokker-Planck equation, then for any state of the system, as
defined by the time-dependent probability density function P , one may introduce the entropy

S0(t) = −
∫

P ln
P

Pst
dx. (301)

Such entropy always increases reaching its absolute maximum in the ”equilibrium” with P = Pst. This finishes
establishing the form of the second law for the Fokker-Planck equation.

N. Examples of use of the entropy growth theorem

The entropy growth theorem allows one to deal with the problem of convergence to the stationary solution, when
the latter exists, in situations where the Fokker-Planck equation does not have the special gradient form described
by Eq. (??). It must be stressed that the gradient form does not hold already in the simplest situations, for example
it does not hold for the Kramers equation (302) below. However, the theorem applies only if Dij is a non-degenerate
matrix, while in many situations it is in fact degenerate. A simple example is provided by the one-dimensional
Kramers equation

∂P (x, v, t)
∂t

=

[
− ∂

∂x
v +

∂

∂v

(
v

τ
+

1
M

dU

dx

)
+

kBT

Mτ

∂

∂v2

]
P, (302)

describing Brownian motion in an external potential U ,

dx

dt
= v,

dv

dt
= −v

τ
− 1

M

dU

dx
+

f

M
. (303)
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The above equation cannot be written in the gradient form while the diffusion matrix is degenerate with only one non-
vanishing component Dvv. Thus while we know that the Boltzmann distribution Peq(x, v) = N exp[−Mv2/2kBT −
U(x)/kBT ] is a stationary solution of Eq. (302) the results shown before do not guarantee that an arbitrary initial
state will relax to the Boltzmann distribution. Let us show how one can still use the entropy growth theorem to show
that a general solution of the Kramers equation does converge to the Boltzmann distribution at large times. We note
that Eq. (300) implies for Kramers equation that ∂ξ/∂v where ξ = ln W (x, v, t)/Peq must tend to zero at large t for
any solution W of the Fokker-Planck equation. This implies that at large times any distribution will take the form

W (x, v, t) = h(x, t) exp
[
−MV 2

2kBT

]
, (304)

where h is some function of x and t. Inserting the above into the Kramers equation (302) we find that h obeys

∂h

∂t
=

(
− ∂

∂x
− 1

kBT

dU

dx

)
vh. (305)

Because h is independent of velocity v it follows that

∂h

∂t
= 0, h = ho exp

[
−U(x)

kBT

]
. (306)

Thus relying on the entropy growth theorem we were able to show that the stationary solution is also unique for the
Kramers equation and all initial conditions relax to it at large times. It is important that we may actually demonstrate
this result which is expected on physical grounds.

The usefulness of the entropy growth theorem is not limited to demonstrating uniqueness of the stationary solution
and the convergence to it at large times. In particular, as we mentioned, the theorem holds even if the coefficients of
the Fokker-Planck equation depend on time where there is no meaning to a stationary solution. An important case
of problems with no stationary solution is diffusion-like problems. Consider one-dimensional diffusion equation

∂P

∂t
= D

∂2P

∂x2
. (307)

If we consider diffusion on an infinite line then there is no stationary solution to the above equation - the particle
diffuses spreading over a continuously growing region of space. It turns out that in this and many other similar
situations the role of the stationary solution is played by a self-similar solution. The self-similar solution is a solution
of the form P (x, t) = t−αΦ(xβ/t) where α and β are some constants and Φ is some function (due to the normalization
condition

∫
P (x, t)dx = 1 one has αβ = 1). The evolution of such solution in time is dull - the plot of the function at

a later time can be obtained from the previous one by a simple rescaling of the units on the axes. This ”triviality”
of the evolution is next in complexity after the stationary solution which is a particular case of a self-similar solution
with unit rescaling. In particular, when a slef-similar solution ansatz is plugged in the Fokker-Planck equation, then,
if such solution exists, it is found from ODE on Φ rather than the PDE. For diffusion equation the search for a
self-similar solution leads to

Ps(x, t) =
1√

4πDt
exp

[
− x2

4Dt

]
. (308)

Of course Ps(x, t) = G(x, x′, t) where the Green function G(x, x′, t) solves Eq. (307) with the initial condition
G(x, x′, 0 = δ(x − x′). Now the H-theorem still says that any two solutions of the Fokker-Planck equation must
converge at large times. Hence we conclude that at large times all solutions of the diffusion equation become approx-
imately self-similar and are described by Eq. (308).

The above conclusion is easy to derive for the diffusion equation. First we note that G(x, x′, t) is just a shifted
distribution Ps(x, t) that is G(x, x′, t) = Ps(x−x′, t). At large times where

√
DT À x′ we have G(x, x′, t) ≈ G(x, 0, t)

which shows the conclusion of the theorem for the Green function solution of the Fokker-Planck equation. For arbitrary
solution we have the general expression P (x, t) =

∫
G(x, x′, t)P (x′, 0)dx′ and at times where

√
Dt is much larger both

than the center of mass xc and the width of the initial distribution we have P (x, t) ≈ ∫
G(x, xc, t)P (x′, 0)dx′ =

G(x, xc, t). Thus we see that at large times P (x, t) converges to Ps(x, t). Of course to improve the rate of convergence
it is better to use G(x, xc, t), which is just a shifted self-similar solution, instead of G(x, 0, t).

While for diffusion equation the above conclusions are rather easy to see directly, in more complicated situations the
search for a self-similar solution and then the proof of the asymptotic convergence to it based on H-theorem constitute
a very efficient way of deriving large-time behavior of the solutions.
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VIII. BOLTZMANN EQUATION

Boltzmann equation is historically the first case when it became possible to see how microscopic laws give rise to
macroscopic ones. The corresponding passage from one level of description (microscopic one) to another (macroscopic
one) involves an assumption that cannot be derived on purely mechanical grounds. Thus Boltzmann equation has
value additional to the merely practical one - it lays bare what is needed (in the case of the gas) in order to pass from
the microscopic time-reversible dynamics to the irreversible macroscopic dynamics.

Physical systems that can be studied with the help of the Boltzmann equation are dilute gases of (quasi) particles.
We consider ordinary molecular gases. If we designate the radius of molecular interactions by d then the condition that
the gas is dilute is ε ≡ nd3 ¿ 1 where n is the concentration of particles. Since the average distance n−1/3 between the
particles is much larger than their effective size d then most of the time each molecule moves freely. The dynamics of
the gas is the free motion of particles interrupted by collisions between pairs of particles. The collisions, though rare,
play crucial role in the gas relaxation to equilibrium - it is them which make the system dynamics chaotic allowing
for mixing (forgetting of initial conditions and relaxation). Note that in the basic equilibrium statistical mechanics
calculations one takes for the gas Hamiltonian just the Hamiltonian of the free particles, thus neglecting collisions.
The role of collisions is subtle: they are the reason for the relaxation to equilibrium but they can be neglected in the
final equilibrium averages.

Let us characterize collisions. It is sufficient to consider only binary collisions - collisions between larger collections
of particles are negligible because the gas is dilute. The so-called mean free path lmean gives a typical distance that a
molecule passes between two collisions. This distance is found by noting that if the particle passes a distance l then
on the way it bumps all particles within the cylinder of height l and cross-section d2. Thus the distance passed to
bump into one particle on average is determined from the condition nlmeand2 ∼ 1 or

lmean ∼ 1
nd2

. (309)

Note that lmean is much larger not only than the molecular size d but also than the mean distance n−1/3 between
the particles, lmeann1/3 = ε−2/3 À 1. The characteristic time that passes between the collisions - the mean free time
τmean is given by τmean ∼ lmean/v where v is the typical molecular velocity (normally thermal velocity). Collisions
occur in spatial regions of typical size d ¿ lmean with collision duration time τcol ∼ d/v ¿ τmean. Within the frame
of the Boltzmann equation coarse graining is performed over temporal scales much larger than τcol and over spatial
scales much larger than d. As a result the collisions are effectively instantaneous in time and local in space. The
resulting effective dynamics is qualitatively similar to the dynamics within the model of hard spheres with radius d/2.
In the latter dynamics the particles are free as long as the distance between their centers exceeds d. At the moment
the distance equals d the normal component of the relative velocity of the particles is reversed instantaneously. The
arising so-called event-driven dynamics is simple to imagine. One assumes that all coordinates and momenta of the
particles are given at some initial time t0. Propagating these coordinates and momenta in time according to the
laws of the free motion one finds the time t1 of the first collision event, where the distance between a particular
pair of particles becomes equal to d. Then updating the velocities of the colliding particles according to the normal
component reversal law one repeats the procedure starting with time t1. Thus the dynamics consists of free motion
interrupted by discontinuous changes in particles velocities that take place at discrete moments of time. Within the
frame of the Boltzmann equation this applies effectively to all gases.

The Boltzmann equation provides a more fundamental description of the gas dynamics than the hydrodynamics
that we considered before. As we will see the latter applies at spatial scales larger than lmean and temporal scales
larger than τmean, while the Boltzmann equation is able in principle to describe motions at smaller scales as well.
However, even if the motion occurs at scales describable by the hydrodynamics, its more fundamental description by
the Boltzmann equation allows to express the kinetic coefficients of viscosity and heat conductivity (that appear in
hydrodynamics as phenomenological constants) in terms of microscopic quantities. Such expressions allow to address
the actual calculations of the coefficients.

Like hydrodynamics, the Boltzmann equation applies to gas dynamics in each realization rather than applying
just on average to an ensemble of identical systems. The equation applies to the so-called single-particle distribution
function f(x,p, t) which definition is rather similar to the definition of the hydrodynamic fields. We first consider a
gas without internal degrees of freedom (monoatomic gas). We define a microscopic density

fmicro(x,p, t) =
N∑

i=1

δ(xi(t)− x)δ(pi(t)− p), (310)

that gives the density of particles with momentum p at point x. We have
∫

fmicro(x, p, t)dxdp = N . The evolution
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of the above density is determined by the equations of motion which are governed by the Hamiltonian

H =
N∑

i=1

p2
i

2m
+

∑

j<i

U(|ri − rj |). (311)

The assumption that the potential is given by the sum of pair interactions is of no limitation because only binary
collisions need to be accounted in the considered approximation. The density fmicro evolves according to

∂fmicro

∂t
+ v

∂fmicro

∂x
=

(
∂fmicro

∂t

)

col

, v =
p

m
, (312)

where the RHS is due to collisions and it is given by
(

∂fmicro

∂t

)

col

=
∂

∂p

∑

i 6=j

δ(xi(t)− x)δ(pi(t)− p)
∂U(|x− xj(t)|)

∂x
. (313)

We now define the coarse-grained object, the single-particle distribution function f by

f(x,p, t) ≡
∫ t+∆t

t

dt

∆t

∫

|x′−x|≤l

dx′

Vl

∫

|p′−p|≤∆p

dp′

V∆p
fmicro(x′, p′, t′). (314)

where Vl, V∆p are the volumes of the regions of coarse graining. While fmicro(x, p, t) is a function with rather wild
dynamics in time, its coarse-grained version obtained with a proper choice of ∆t, l and ∆p, satisfies a smooth dynamics
in much the same way as the hydrodynamic fields do. The function f(x,p, t) counts the partial time-average number
of particles N(x,p, t) in a region of the single-particle phase space,

N(x, p, t) = f(x,p, t)VlV∆p. (315)

This region is a ball with radius l near x and a ball with radius ∆p near p. The choice of ∆p is done so that the
variation of f(x,p, t) over the scale ∆p in momentum space is negligible and one has

∫ t+∆t

t

dt

∆t

∫

|x′−x|≤l

dx′

Vl

∫

|p′−p|≤∆p

dp′

V∆p
v′∇′fmicro(x′, p′, t′) ≈ v∇f(x,p, t). (316)

Still ∆p should not be too small: the consistent definition of f is only possible in the quasi-classical approximation
and ∆p must be much larger than the scale of momentum quantization ~/l. The time-derivative of f(x, p, t), similarly
to the one of fmicro(x, p, t) see Eq. (312), is given by

∂f

∂t
= −v

∂f

∂x
+

(
∂f

∂t

)

col

, (317)

where the first term on the RHS describes the change in N(x, p, t) caused by the ballistic streaming of the particles
out of Vl. The understand the second term, due to the collisions, we consider the choice of ∆t and l. The choice of l is
done according to l À n−1/3 so that Vl contains a large number of particles. This makes f change only due to averaged
effect of many collisions, see below. The choice of ∆t is done so that τcol ¿ ∆t ¿ τmean. Then due to τcol ¿ ∆t the
collisions occur effectively instantaneously while due to ∆t ¿ τmean the fraction of particles undergoing collisions in
∆t is small. Then the change of f due to collisions can be described differentially and the fraction (∆N(x, p, t)/∆t)col

in
(

∂f

∂t

)

col

≈ 1
VlV∆p

(
∆N(x, p, t)

∆t

)

col

, (318)

is well-defined. Here ∆N describes the variation due to collisions of the number of particles in VlV∆p within time ∆t .
This variation is composed of two parts. First part is due to collisions that particles with momentum p undergo with
other particles: such collisions produce particles with momenta generally different from p and decrease N(x, p, t). To
describe the corresponding change of N we introduce the number of collisions dNc that occur per unit time, within
the ”physically infinitesimal” volume dV (that is dV that contains many particles but such that f(x, p, t) changes
negligibly over it) such that particles momenta p, p1 are changed to p′, p′1

dNc = w(p′,p′1;p,p1)ff1dpdp1dp′dp′1dV, (319)
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where dp, dp1, dp′, dp′1 describe indeterminacy in the particles momenta, f = f(x, p, t) and f1 = f(x,p, t) (similar
notations for f will be used below). The number of collisions is naturally proportional to the number of pairs of
particles ff1 with initial momenta p, p1 and to the volume factors. The factor w(p′, p′1; p, p1) comes from mechanics:
it describes the scattering of two particles and can be found by solving the (quantum) mechanical scattering problem.
Note that initial momenta are written to the right as it is customary in quantum mechanics. To illustrate Eq. (319)
let us consider its use for the derivation of the detailed balance property of the equilibrium state of the gas.

A. Detailed balance

The principle of the detailed balance says that the time-reversal invariance of the equilibrium state in fact holds
on the level of elementary processes: on average the changes in the system caused by each elementary process are
balanced by the change due to the time-reversed process. For gas this signifies that in equilibrium the average number
of transitions from p, p1 to p′, p′1 is equal to the average number of transitions from −p′, −p′1 to −p, −p1 (minus
comes from time-reversal of momenta). Designating the equilibrium distribution function f by f0(x,p) we find the
condition of detailed balance

w(p′, p′1; p,p1)f0f01dpdp1dp′dp′1dV = w(−p,−p1;−p′,−p′1)f
′
0f
′
01dpdp1dp′dp′1dV, (320)

or

w(p′,p′1;p, p1)f0f01 = w(−p,−p1;−p′,−p′1)f
′
0f
′
01. (321)

Note that due to mechanical reversibility we have

w(p′,p′1;p,p1) = w(−p,−p1;−p′,−p′1). (322)

Let us verify the the Boltzmann distribution

f0(x, p) = const exp
[
− p2

2mkBT

]
, (323)

indeed validates Eq. (321). We note that w(p′, p′1; p, p1) should vanish for values of p-s that violate conservation of
total momentum and energy that is

w(p′, p′1; p, p1) ∝ δ

(
p2

2m
+

p2
1

2m
− p′2

2m
− (p′1)

2

2m

)
δ (p + p1 − p′ − p′1) . (324)

Then equality in Eq. (321) holds due to the first δ−function above. In fact the presence of the second δ−function
allows for the more general solution to the detailed balance condition

f0(x, p) = const exp
[
−p2/2m− p · V

2mkBT

]
, (325)

where V is an arbitrary constant vector. The above solution can be rewritten as

f0(x, p) = const′ exp
[
−m(v − V )2

2kBT

]
, (326)

and it corresponds to the Maxwell distribution as seen in the frame moving at speed V . Let us note that the detailed
balance demand refers only to an average number of processes and not exact the exact one. How does this enter
the above consideration? The point is that (323) is true only on average - in reality there are always fluctuations
of f(x, p, t) even in equilibrium. Such fluctuations are neglected here from the very beginning and they are also
neglected in the frame of the Boltzmann equation.

B. The Boltzmann equation

We are now ready to describe (∆N(x, p, t)/∆t)col in Eq. (318). It is given by
(

∆N(x, p, t)
∆t

)

col

= −VlV∆p

∫
w(p′,p′1;p,p1)ff1dp1dp′dp′1 + VlV∆p

∫
w(p,p1;p′, p′1)f

′f ′1dp1dp′dp′1. (327)
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The first term in the RHS describes the decrease of N due to collisions of particles with momentum p with particles
with momentum p1 and its meaning was explained above. The second term describes the increase of N(x, p, t) due to
collisions of two particles with momenta p′ and p′1 that result in one of the particles carrying momentum p. Comparing
the above with Eq. (318) we find the Boltzmann equation that describes the evolution of f(x, p, t) according to

∂f

∂t
+ v

∂f

∂x
= Stf, (328)

where the so-called collision integral Stf describes the effect of collisions and it can be written as

Stf =
∫

(w′f ′f ′1 − wff1)dpdp′dp′1, w = w(p′,p′1;p,p1), w′ = w(p,p1;p′, p′1). (329)

One can rewrite the above integral in a different form using unitarity. This is done more conveniently using quantum
mechanical notations. We use the scattering matrix S that describes the probability amplitudes of different scattering
processes. This matrix is unitary so that S+S = 1 and we have

∑
n

S∗niSnk = δik,
∑

n

|Sni|2 = 1, (330)

where the latter equality follows from the former by setting i = k. Since |Sni|2 describes the probability of the
transition from i to n then

∑
n |Sni|2 = 1 just expresses that the sum of the probabilities of passing somewhere is

one. On the other hand writing the unitarity condition in the form SS+ = 1 we find
∑

n SinS∗kn = δik and
∑

n

|Sin|2 = 1, (331)

that is the sum of probabilities of transitions to a given final state is also one. It follows that
∑

n |Sin|2 =
∑

n |Sni|2.
Excluding in the sum the i = n term which is the same on both sides we obtain

∑

n6=i

|Sin|2 =
∑

n6=i

|Sni|2. (332)

This condition written in terms of w takes the form
∫

w(p′, p′1; p, p1)dp′dp′1 =
∫

w(p, p1; p′,p′1)dp′dp′1. (333)

Noting that the integral over p′, p′1 in the second term in Stf in Eq. (329) does not involve f and using the identity
above we may rewrite the collision integral as

Stf =
∫

w′ [f ′f ′1 − ff1] dp1dp′dp′1. (334)

The above form is particularly convenient to see that the collision integral vanishes for the shifted Maxwell distribution
described by Eq. (326) (and thus of course also the non-sifted distribution). This is seen from the proportionality of w′

to δ−functions in energy and momenta like in the analysis of the detailed balance condition. Thus we see immediately
from the above form that the equilibrium solutions described by Eq. (326) are stationary solutions of the Boltzmann
equation.

It is possible to incorporate external fields in the Boltzmann description easily. For example if an external potential
U is applied to the gas and U changes slowly over the scale l then the modified Boltzmann equation is

∂f

∂t
+ v

∂f

∂x
− ∂U

∂x

∂f

∂p
= Stf, (335)

where the last term on the LHS accounts for the changes in N(x, p, t) due to the external force driving of p. In
particular, external potential is a way to include rigid walls into the consideration. Below we don’t write down the
external forces term which can be included simply.

Why does f(x, p, t) obeys a closed dynamics? As we mentioned velocity of a single particle is almost integral of
motion: it is conserved most of the time. Still velocity by itself is not a slow variable because it undergoes fast
changes in collisions. To turn it into a slow variable one introduces the collective variable f(x, p, t) which is similar to
particle velocity averaged over many particles. Such function is already undergoing only slow changes (over the scale
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τmean) and it represents a slow variable obeying a closed dynamics. The derivation of the closed dynamics involves an
essential assumption which we discuss after the derivation of a main consequence of Eq. (328) - the famous H-theorem
by Boltzmann. To describe the theorem in its general form we first generalize the description to gases with internal
degrees of freedom. A simplest example is a diatomic gas where besides the translational center of mass degree of
freedom one needs to account for the rotational degree of freedom of the molecule. In this case collisions generally
change not only p but also the angular momentum of the molecule M . In contrast, M is conserved between the
collisions. It turns out that in this case it is sufficient to include M in the independent arguments of f while the angle
coordinates are not essential. Generally, for molecular gases with internal degrees of freedom the Boltzmann equation
applies to f(x,Γ, t) where Γ includes all integrals of the free motion of the molecule (for diatomic gas Γ = (p,M)).
The equation still has the form of Eq. (328) with the collision integral given by

Stf =
∫

(w′f ′f ′1 − wff1)dΓdΓ′dΓ′1, w = w(Γ′,Γ′1; Γ,Γ1), w′ = w(Γ,Γ1; Γ′, Γ′1), (336)

where w now characterizes the transitions in Γ. As for monoatomic gases, using unitarity one finds an equivalent form
of Stf given by

Stf =
∫

w′ [f ′f ′1 − ff1] dΓ1dΓ′dΓ′1. (337)

Again one can see that Stf vanishes for the equilibrium distribution.

IX. THE H-THEOREM

The celebrated H−theorem by Boltzmann describes a main implication of Eq. (328): within the frame of the
Boltzmann equation the information is no longer conserved and entropy grows. In other words, there is finite memory
within the frame of the equation. Thus in contrast to the microscopic dynamics which is completely time-reversible,
the dynamics described by the Boltzmann equation is irreversible and leads to forgetting of the initial conditions.
This is in accord with the general expectation that a passage to a reduced description involves loss of information and
the missing information (equivalent to entropy) will grow in the course of evolution. Here the reduced description of
the gas dynamics is performed in terms of the single-particle distribution function f(r,Γ) in contrast to its complete
description in terms of the coordinates and the momenta of the particles. We will discuss the origin of irreversibility
more below.

Boltzmann considered an ”H-function” which is minus the entropy S of the gas. The entropy in terms of the
single-particle distribution function f(r,Γ, t) is given by

S =
∫

f ln
(

e

f

)
dV dΓ. (338)

Clearly S is a function of the state of the gas and the gas evolution is associated with some variation of S in time.
This variation obeys

dS

dt
= −

∫
ln f

∂f

∂t
dV dΓ =

∫
ln fv

∂f

∂x
dV dΓ +

(
dS

dt

)

col

, (339)

where the last term describes the change of S due to collisions,
(

dS

dt

)

col

= −
∫

ln f

(
∂f

∂t

)

col

dV dΓ = −
∫

ln fStfdV dΓ. (340)

For the first term in the RHS of Eq. (339) one has
∫

ln fv
∂f

∂x
dV dΓ =

∫
v

∂

∂x
f ln

f

e
dV dΓ = 0, (341)

where we assumed that the integral of the total derivative vanishes. We conclude that entropy changes only due to
collisions,

dS

dt
=

(
dS

dt

)

col

=
∫

ṡdx, (342)
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where we defined the density ṡ of entropy production due to collisions by

ṡ(x, t) = −
∫

ln fStfdΓ. (343)

To study the above expression we consider properties of the collision integral.

A. Some properties of the collision integral

Let us derive a useful transformation for integrals of the form
∫

φ(Γ)StfdΓ where φ is an arbitrary function. Using
the collision integral in the form (336) we have

∫
φ(Γ)StfdΓ =

∫
φ(Γ)w(Γ, Γ1; Γ′, Γ′1)f

′f ′1d
4Γ−

∫
φ(Γ)w(Γ′,Γ′1; Γ,Γ1)ff1d

4Γ. (344)

where d4Γ ≡ dΓdΓ1dΓ′dΓ′1. Interchanging in the second integral Γ and Γ1 with Γ′ and Γ′1 we find
∫

φ(Γ)StfdΓ =
∫

[φ(Γ)− φ(Γ′)] w(Γ,Γ1; Γ′, Γ′1)f
′f ′1d

4Γ. (345)

Next we interchange Γ with Γ1 and Γ′ with Γ′1 in the last integral and obtain
∫

[φ(Γ)− φ(Γ′)] w(Γ, Γ1; Γ′,Γ′1)f
′f ′1d

4Γ =
∫

[φ(Γ1)− φ(Γ′1)] w(Γ, Γ1; Γ′, Γ′1)f
′f ′1d

4Γ, (346)

where we use that w(Γ,Γ1; Γ′, Γ′1) = w(Γ1, Γ; Γ′1, Γ
′). The latter equality follows from the fact that w on both sides of

the equation describe the same scattering event with the only change of which particle to refer to as the ”first” and
which as the ”second”. Taking half sum of Eq. (346) we obtain the final result

∫
φ(Γ)StfdΓ =

1
2

∫
[φ(Γ) + φ(Γ1)− φ(Γ′)− φ(Γ′1)] w(Γ, Γ1; Γ′,Γ′1)f

′f ′1d
4Γ. (347)

By taking φ = 1 we find from the above equation that
∫

StfdΓ = 0. (348)

Two additional integrals vanish as well,
∫

ε(Γ)StfdΓ = 0,

∫
pStfdΓ = 0, (349)

which is seen by noting that w in Eq. (347) is non-vanishing only for those values of Γ which obey the energy
conservation ε(Γ)+ ε(Γ1) = ε(Γ′)+ ε(Γ′1) and the momentum conservation p+p1 = p′+p′1. Let us show the meaning
of equations (348)-(349). We introduce the particle concentration N(x, t), the energy density N(x, t)ε(x, t) and the
momentum density ρ(x, t)V (x, t) where ρ(x, t) = mN(x, t) is the mass density. These can be expressed with the help
of the single-particle distribution function f(r, Γ, t) as

N(x, t) =
∫

f(x,Γ, t)dΓ, N(x, t)ε(x, t) =
∫

ε(Γ)f(x,Γ, t)dΓ, ρ(x, t)V (x, t) =
∫

pf(x, Γ, t)dΓ. (350)

Then Eqs. (348)-(349) tell that the rates of change of the above densities due to the collisions vanish,
(

∂N

∂t

)

col

=
∫ (

∂f

∂t

)

col

dΓ =
∫

StfdΓ = 0,

(
∂(Nε)

∂t

)

col

=
∫

ε(Γ)
(

∂f

∂t

)

col

dΓ =
∫

ε(Γ)StfdΓ = 0, (351)
(

∂(ρV )
∂t

)

col

=
∫

p

(
∂f

∂t

)

col

dΓ =
∫

pStfdΓ = 0. (352)

In other words, collisions happening within a physically infinitesimal volume dV do not change the total number
of particles, energy and momentum inside the volume. An additional property of the collision integral follows from
Eq. (347), namely that

∫
ln fStfdΓ = −1

2

∫
w′f ′f ′1 ln

(
f ′f ′1
ff1

)
d4Γ ≤ 0. (353)
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To see the inequality we note that Eq. (348) applied to collision integral in the form (337) produces the identity
∫

w′(f ′f ′1 − ff1)d4Γ =
∫

w′ff1 [x− 1] = 0, x ≡ f ′f ′1
ff1

. (354)

Using the above identity we may rewrite Eq. (353) and obtain
∫

ln fStfdΓ = −1
2

∫
w′ff1 [x ln x− x + 1] d4Γ ≤ 0, (355)

where the equality holds if and only if x = 1, see Eq. (297). It is the last property of the collision integral that
underlies the H−theorem.

B. Proof of H−theorem

We are now ready to complete the proof of the H−theorem. We find from Eq. (342) that

dS

dt
=

∫
ṡdx, ṡ = −

∫
ln fStfdΓ ≥ 0, (356)

see Eq. (355). Thus the entropy grows always unless x = 1 or ff1 = f ′f ′1 where the latter equality is satisfied in
equilibrium. Let us stress however that the above equation does not imply that in relaxation to equilibrium the gas
entropy grows locally everywhere. In fact this is impossible - we could start with an initial state which local entropy
density exceeds the equilibrium one in some places. To clarify this point we introduce the entropy density s̃ by

S(t) =
∫

s̃(x, t)dV, s̃(x, t) ≡
∫

f ln
(

e

f

)
dΓ. (357)

We have

∂s̃

∂t
=

∫
ln fv

∂f

∂x
dΓ−

∫
ln fStfdΓ. (358)

While the last term is always nonnegative the first one can have an arbitrary sign. In fact in some regions of space it
is negative because its spatial integral balances to zero. Thus locally entropy can decrease due to entropy exchange
with the nearby regions of the gas which is described by the velocity term above.

We see that the Boltzmann equation is in apparent contradiction with mechanics. Within mechanics there is no
function of state which would grow monotonously with time - the existence of such a function would contradict
microscopic reversibility. In particular, for gas obeying the Boltzmann equation the Poincare recurrence theorem does
not hold. The theorem says that for gas in a finite vessel the system evolution always brings it back arbitrarily close
to initial state. The return time is called the Poincare recurrence time. In particular, if initially gas molecules are
localized in one half of the vessel then they will return close to this state later. The point where the transition to
irreversible equations occurs is Eq. (319). The equation assumes that the number of pairs of particles with given
momenta in given volume is given by the product of the single-particle distribution functions. In reality, to describe
the number of pairs we need to introduce the two-particle distribution function that gives us directly the number
of pairs in the volume. The decomposition into product like in the usual probability theory corresponds to the
assumption that the particles are not correlated before the collision. On the other hand, the particles are correlated
after the collision. In this way, the Boltzmann equation breaks the symmetry between the moments of time before
and after the collision which eventually results in irreversible dynamics. The assumption that molecules have no prior
knowledge of each other and are independent before the collision is known as the molecular chaos assumption. Note
the resemblance to the quantum mechanical rule of measurement which was observed by one of the students.

What does the Boltzmann equation describe in view of the above? In reality sooner or later the molecules which
collided in the past and are thus correlated will collide again. The time when it happens is on average expected to be
comparable with Poincare recurrence time. There is an additional effect that the correlation between the molecules
spreads in the gas due to collisions with molecules that will collide with both of the particles. In this way the memory
of the initial state stays in the gas. The time-scale at which the effects of this memory are expected to be visible is the
Poincare recurrence time which is huge for large number of molecules. At ordinary time-scales the assumption that
colliding molecules are not correlated works well. Thus the Boltzmann equation describes what happens at ordinary
time-scales most of the time (i. e. assuming that we are not close to the time when memory effects start playing
role). This is in accord with the basic understanding of the laws of thermodynamics as not absolute.
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X. HYDRODYNAMICS AS UNIVERSAL DESCRIPTION OF SOLUTIONS TO THE BOLTZMANN
EQUATION AT LARGE TIMES

The fact that collisions increase the entropy locally allows to reach much insight into the gas evolution. Below we
perform the consideration for gas with no internal degrees of freedom.

The local relaxation to equilibrium due to collisions is constrained by the laws of conservation of mass, energy
and momentum expressed by Eqs. (352). To see the consequences of such constrained local relaxation consider first
the evolution of the gas from the initial condition on f that corresponds to constant densities of mass, energy and
momentum so that N(x, t = 0), ε(x, t = 0) and V (x, t = 0) defined by Eqs. (350) are constants. In this case the gas
will relax to equilibrium during the characteristic time-scale of collisions τmean. This is summarized by the so-called
relaxation time approximation where the collision integral is substituted by

Stf ≈ −f − f0

τ
, (359)

with τ ∼ τmean and f0 the local equilibrium distribution function, see below. In contrast, the relaxation time increases
greatly when N(x, t = 0), ε(x, t = 0) and V (x, t = 0) vary in space. Assume first that the scale L of variations of
N(x, t = 0), ε(x, t = 0) and V (x, t = 0) is very large. In this case the gas locally does not know that somewhere far
away the values of N(x, t = 0), ε(x, t = 0) and V (x, t = 0) are different from the local ones. The gas will relax within
characteristic time-scale τmean to the state which has the form of the local equilibrium with f(x, p) obeying

f(x, p) ≈ f0(x, p, t = 0) =
N(x, t = 0)

[2πmkBT (x, t = 0)]3/2
exp

[
−m (v − V [x, t = 0])2

2kBT (x, t = 0)

]
, (360)

where T (x, t = 0) is fixed by the demand that the distribution function above reproduces the correct value of the
energy density,

ε(x, t = 0) =
1

N(x, t = 0)

∫
mv2

2
f(x,p)dp =

mV (x, t = 0)2

2
+

3kBT (x, t = 0)
2

, (361)

where the first term in the RHS represents the center of mass energy. To see the above formally note that by the
assumption of large L the spatial gradient term in the Boltzmann equation (328) is much smaller than the collision
integral so that initially the Boltzmann equation gives ∂tf ≈ Stf . The latter evolution is purely in momentum
variable with f(x, p) evolving independently at different x. This evolution continues until f becomes of the form
f = f0 + δf where St[f0 + δf ] ∼ v∇f0 (remember that Stf0 = 0 so that St[f0 + δf ] ∼ δf). At this point the gradient
term becomes important in the Boltzmann equation while f0 has the form given by Eq. (360) with N(x), ε(x) and
V (x) given by their original local values at t = 0. Once this happens (within a characteristic time-scale τmean) further
evolution starts to change the local values of the conserved quantities that is f(x,p, t) obeys

f(x, p, t) = f0(x, p, t) + δf, f0(x,p, t) =
N(x, t)

[2πmkBT (x, t)]3/2
exp

[
−m (v − V [x, t])2

2kBT (x, t)

]
, δf ¿ f0, (362)

where N(x, t), V (x, t) and T (x, t) depend in time. The evolution of the latter fields is due to the combined action
of the ballistic motion, that mixes them among different regions of the gas, and the local relaxation due to collisions,
that keeps the approximate local equilibrium form given by Eq. (362) intact. The characteristic scale of this evolution
is the mixing time τmix ∼ L/v ∼ τmean(L/lmean). During this time-scale gas molecules moving at the characteristic
speed v will mix the locally conserved quantities which inhomogeneity scale is L. It is now clear how large L should
be for the above picture to hold: it should be such that τmean ¿ τmix or lmean/L ¿ 1. The parameter lmean/L is
called the Knudsen number Kn. If the initial conditions are such that Kn ¿ 1 then after a time-scale of order τmean

the distribution function takes the form described by Eq. (362). In particular, if one is not interested in the details of
the initial transient at time-scale τmean one can use directly Eq. (362) and address the evolution of N(x, t), V (x, t)
and T (x, t). This evolution is described by the equations of hydrodynamics and it is discussed in the next subsection.
Note that the final result of the hydrodynamic evolution must be that N(x), V (x) and T (x) are constant while δf
in Eq. (362) vanishes. The relaxation time is at least τmix À τmean and sometimes much larger.

Thus we saw that if initial conditions for the Boltzmann equation are such that Kn ¿ 1 then at t À τmean the
distribution function is described by Eq. (362) and the equations of hydrodynamics. Let us show that in fact such
description holds at t À τmean for arbitrary initial conditions, including those with Kn & 1. The ultimate reason for
this can be seen from the theory of hydrodynamic fluctuations that demonstrates the robust property that the higher
the wave-number of the perturbation, the faster it relaxes. As a result the evolution of Kn with time brings us to
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the region with Kn ¿ 1 where Eq. (362) starts to apply. The evolution of N(x, t), V (x, t) and T (x, t) proceeds as
follows. During time-scale of collisions τmean the initial fields become smooth over the scale lmean and Kn becomes
of order one. During further evolution the combined action of the ballistic motions and collisions gradually eats
the higher-wavenumber components of N(x, t), V (x, t) and T (x, t) unless the regime with Kn ¿ 1 settles down at
t À τmean. The difference between the cases where the initial conditions obey Kn ¿ 1 and Kn & 1 is that in the
latter case one does not know the effective initial conditions for N(x, t), V (x, t) and T (x, t) in Eq. (362) without
going into the details of the transient regime. For initial Kn ¿ 1 these conditions are determined just by the exact
values of the locally conserved quantities at t = 0.

Thus a reduced description of the gas dynamics is possible at t À τmean where instead of one scalar function of
six variables one can use five scalar functions, N(x, t), V (x, t) and T (x, t) of three variables. This is a big reduction
in complexity: instead of f(x, p) we use just a few of its low-order momenta in p- variable [hydrodynamic fields
are moments of f see Eqs.(350)]. We have now three levels of description of gas dynamics, which apply at different
temporal and spatial scales. Mechanics (classical or quantum) is the most fundamental level of the description here.
The Boltzmann equation is the next level, it provides a description at time-scales larger than the duration of collisions
τcol and at spatial scales larger than the range of molecular interactions or the size of the collision regions d. Within
the Boltzmann equation collisions are considered as point-like events in space and time. The last, third, level of
description is hydrodynamic, it applies at time-scales larger than τmean À τcol and at spatial scales much larger than
lmean. Let us pass to the derivation of the hydrodynamic evolution equations.

A. The evolution of the hydrodynamic fields

We now address the evolution of densities of locally conserved charges at time-scales much greater than τmean

which is equivalent to the evolution of the hydrodynamic fields N(x, t), V (x, t) and T (x, t). Hydrodynamics will
be considered as a certain perturbation series solution of the Boltzmann equation with evolution determined by the
demand that the series solves the equation.

First we note by taking the time derivatives of Eqs. (350) with the help of the Boltzmann equation that the following
identities hold

∂ρ(x, t)
∂t

+∇ · (ρV ) = 0,
∂ρ(x, t)Vi(x, t)

∂t
= − ∂

∂xj

∫
mvivjf(x, p, t)dp,

∂N(x, t)ε(x, t)
∂t

= − ∂

∂xi

∫
mviv

2

2
f(x, p, t)dp, (363)

where we used that the collision integral gives zero contribution into the time derivatives of densities of locally
conserved charged, see Eqs. (351)-(352). Above we employed the monoatomic gas expression ε(Γ) = mv2/2. The
equations above are just consequences of the definition and they apply independently of the dynamics of f . Assump-
tions on f will allow us to close the equations for the fields N(x, t), V (x, t) and T (x, t). Notice however that the
continuity equation determining the evolution of ρ is already closed and needs no further studies. Now if we consider
the hydrodynamic regime with f determined by Eq. (362) then it is easy to find that in the leading order

∫
mvivjf(x, p, t)dp ≈

∫
mvivjf0(x, p, t)dp = ρViVj + NkBTδij = ρViVj + pδij , (364)

where we recognized that NkBT is the local pressure of the gas. Analogously we have
∫

mviv
2

2
f(x,p, t)dp ≈

∫
mviv

2

2
f0(x,p, t)dp =

(
ρV 2

2
+

3NkBT

2

)
Vi + pVi. (365)

Using the expression for ε in terms of N(x, t), V (x, t) and T (x, t), see Eq. (361), we find the following equations

∂ρ

∂t
+∇ · (ρV ) = 0,

∂ [ρVi]
∂t

+
∂ [ρViVj + pδij ]

∂xj
= 0,

∂

∂t

[
ρV 2

2
+

3NkBT

2

]
+

∂

∂xi

([
ρV 2

2
+

3NkBT

2

]
Vi + pVi

)
= 0. (366)

These are nothing but the ideal hydrodynamics equations of gas with no internal degrees of freedom. Note that the
energy flux is given by energy density times Vi, which represents purely convective flux of energy plus the pressure
contribution pVi that represents the work done by the pressure forces. The above equations while describing meaningful
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dynamics do not describe relaxation to equilibrium. In particular, the entropy is conserved by the equations of ideal
hydrodynamics. In contrast, relaxation dynamics arises in the next order in Kn (which is the small parameter of the
hydrodynamic approximation), where δf = f − f0 is accounted for in Eqs. (364)-(365).


